В молекуле анилина за счет большей ЭО атома азота электронная плотность по системе σ-связей смещена в сторону гетероатома, т.е. имеет место –I –эффект. Однако ЭО азота (3,0) ненамного превышает ЭО атома углерода в sp 2 -гибриди-зации (2,8). Поэтому –I –эффект атома азота небольшой.

Свободная электронная пара атома азота в молекуле анилина находится в сопряжении с π-электронами бензольного кольца, т.е. имеет место +М-эффект (р-π-сопряжение). При этом +М-эффект довольно большой, что связано с близкими значениями атомных радиусов атомов азота и углерода и эффективным перекрыванием электронных облаков этих атомов.

Таким образом, положительный мезомерный эффект будет в значительной степени преобладать над отрицательным индуктивным эффектом: +М > -I

Электронное строение анилина можно представить в виде следующих граничных (или резонансных) структур:

Эти структурные формулы показывают, что:

1) электронная пара азота втягивается в бензолное кольцо, при этом на атоме азота появляется частичный положительный заряд (δ +) и основные свойства аминогруппы уменьшаются.

2) в бензольном кольце, напротив, электронная плотность увеличивается, причем наиболее сильно в орто- и пара-положениях по отношению к аминогруппе. Поэтому атака электрофильных реагентов происходит в орто- и пара-положения. Аминогруппа является ориентантом 1 рода.

Химические свойства ароматических аминов

Ароматические амины вступают в химические превращения как с участием аминогруппы, так и ароматического кольца.

1. Кислотно-основные свойства аминов

1) Основные свойства аминов

Ароматические амины, обладая основными свойствами, реагируют с сильными кислотами, образуя соли аминов:

Соли аминов называют заменяя слово –амин на –аммоний, и перед названием указывают название аниона (хлорид, сульфат, нитрат).

Под действием более сильных оснований ароматические амины вытесняются из их солей:

Ароматические амины имеют менее выраженный основный характер, чем алифатические. Уменьшение основности анилина по сравнению с алифатическими аминами объясняется взаимодействием неподеленной пары электронов азота с электронами ароматического ядра - их сопряжением. Сопряжение уменьшает способность неподеленной электронной пары присоединять протон.

Расположив амины по мере снижения основности, получим следующий ряд:

Alk-NH 2 > NH 3 > C 6 H 5 N(Alk) 2 > C 6 H 5 NHAlk > C 6 H 5 NH 2 > (C 6 H 5) 2 NH > (C 6 H 5) 3 N

Таким образом, алкилирование аминогруппы в ароматических аминах увеличивает основность, а введение в молекулу второго или третьего ароматического кольца приводит к ослаблению основных свойств (трифениламин почти совсем не обладает основными свойствами).

Введение в ароматическое кольцо различных заместителей оказывает значительное влияние на основные свойства ароматических аминов.

Электроноакцепторные заместители (- NO 2 , – CN , – COOH ) усиливают сопряжение атома азота с бензольным кольцом и уменьшают основные свойства аминов.

Электронодонорные заместители ( Alk , - OCH 3 ) приводят к увеличению электронной плотности на атоме азота и, следовательно, к усилению основных свойств. 2) Кислотные свойства Кислотные свойства у ароматических аминов выражены сильнее, чем у алифатических. Это связано со снижением электронной плотности на атоме азота за счет р,π-сопряжения, приводящего к увеличению поляризации связи N-H.

Однако, кислотные свойства ароматических аминов очень слабы, и водород может замещаться лишь при действии щелочных металлов и амидов:

У любого амина на атоме азота есть неподеленная пара электронов. При попадании амина в воду протоны от воды могут по донорно-акцепторному механизму образовывать новую ковалентную полярную связь с атомом азота, давая при этом ион алкил- или ариламмония. Вода, потерявшая протон, превращается в гидроксид-ион. Среда становится щелочной. Таким образом амины являются основаниями. Сила этих оснований зависит от природы и количества радикалов, связанных с азотом. Алифатические радикалы, такие как метил, этил и т.п.,проявляя свои элекронодонорные свойства, увеличивают основность аминов. Ароматические радикалы за счёт делокализации пары электронов по бензольному кольцу, наоборот, очень сильно основность уменьшают. В рамках теории резонанса Лайнуса Полинга это выглядит следующим образом:

Как видно, неподелённая пара электронов присутствует на атоме азота только в одной из резонансных структур (мезомерных форм). В трёх других биполярных структурах на атоме азота, наоборот, находится «+» - заряд, который естественно препятствует протонированию. Это и является причиной резкого снижения основности. Наличие в о- и п- положениях отрицательных зарядов позволяет высказать предположение о лёгкости протекания именно в эти положения реакций электрофильного замещения, где атакующей частицей является катион (например,

) Ниже будут приведены примеры реакций этого типа с ароматическими аминами.

Количественно сила оснований характеризуется величинами К b или их отрицательными логарифмами рК b . Индекс «b» означает, что речь идёт о константе равновесия между основанием – base, которым является амин и его сопряжённой кислотой, то есть аммониевым ионом:

По определению такая обратимая реакция описывается аналитическим выражением:

Так как концентрация воды в разбавленных водных растворах величина практически постоянная и равна 55,5 моль / л , то её вносят в «новую» константу равновесия:

Домножив числитель и знаменатель правой части уравнения на [Н + ] и учитывая, что [Н + ] [ОН - ] = К w = 10 -14 получим:



Логарифмируя это аналитическое выражение с использованием десятичных логарифмов,

придём к уравнению:

Меняя знаки на противоположные и вводя общепринятое обозначение: - lg = p, получим:

Так как логарифм единицы по любому основанию равен нулю, а 14 – рН = рОН, то очевидно, что рК b соответствует тому значению концентрации гидроксильных ионов, при котором половина катионов аммония перейдёт с отщеплением протона в свободный амин. Величина рК b для оснований имеет то же значение, что величина рК а для кислот. Ниже приведена таблица, данные которой показывают влияние природы радикалов и их количества на величины констант основности различных аминов.

Название основания Формула основания Тип основания К b при 25 о С Величина рК b при 25 о С
Аммиак 1,75 10 -5 4,75
Метиламин Первич. алифат. 4,60 10 - 4 3,34
Этиламин Первич. алифат. 6,50 10 - 4 3,19
Бутиламин Первич. алифат. 4,00 10 - 4 3,40
Изобутиамин Первич. алифат. 2,70 10 - 4 3,57
Втор -бутиламин Первич. алифат. 3,60 10 - 4 3,44
Трет -бутиламин Первич. алифат. 2,80 10 - 4 3,55
Бензиламин Первич. алифат. 2,10 10 -5 4,67
Диметиламин Вторич. алифат. 5,40 10 -4 3,27
Диэтиламин Вторич. алифат. 1,20 10 - 3 2,91
Триметиламин Третич. алифат. 6,50 10 -5 4,19
Триэтиламин Третич. алифат. 1,00 10 - 3 3,00
Анилин Первич. аромат. 4,30 10 - 10 9,37
п -толуидин Первич. аромат. 1,32 10 -9 8,88
п -нитроанилин Первич. аромат. 1,00 10 - 13 13,0
N,N-диметиланилин Третич. жирно- ароматический 1,40 10 -9 8,85
Дифениламин Вторич. аромат. 6,20 10 -14 13,21
Пиридин Гетероароматич. 1,50 10 - 9 8,82
Хинолин Гетероароматич. 8,70 10 -10 9,06
Пиперидин Вторич. алифат. и гетероциклический 1,33 10 -3 3,88
Гидразин 9,30 10 -7 6,03
Гидроксиламин 8,90 10 - 9 8,05
Этаноламин Произв. перв. алиф. 1,80 10 - 5 4,75

Данные таблицы позволяют сделать следующие выводы:

1) Алифатические амины гораздо более сильные основания, чем ароматические (примерно в 100000 – 1000000 раз)

2) Гетероароматические амины по своей основности близки к ароматическим.

3) На основность ароматических аминов оказывают сильное влияние заместители, находящиеся в пара - положении к аминогруппе. Электронодонорные заместители увеличивают основность амина, а электроноакцепторные её резко понижают. Отношение основностей ароматических аминов, содержащих метильную и нитрогруппы в указанном положении примерно 10000: 1.

4) Вторичные алифатические амины немного основнее первичных, а третичные имеют основность на том же уровне.

5) Характер радикала у первичных аминов не оказывает существенного влияния на основность амина.

6) Насыщенные гетероциклические амины имеют основность на уровне вторичных алифатических аминов.

7) Жирноароматические амины имеют основность на уровне ароматических аминов.

8) Вторичные ароматические амины имеют основность примерно в 10000 раз меньшую, чем первичные.

9) Электроотрицательные атомы, связанные в молекуле с атомом азота аминогруппы, понижают её основность в 10 (азот) и 1000 раз (кислород).

10) Атом кислорода, отделенный от аминогруппы двумя метиленовыми группами понижает её основность уже только в 67 раз.

Следует отметить также, что основность амидов кислот за счёт электроноакцепторного влияния карбонильной группы очень низкая – ниже даже, чем у вторичных ароматических аминов: у ацетамида рК b = 13,52; у ацетанилида рК b = 13,60 и у мочевины рК b = 13,82

ацетамид ацетанилид мочевина

Как основания первичные, вторичные и третичные амины реагируют с кислотами :

пропиламин бромид пропиламмония

диметиламин сульфат диметиламмония

триметиламин перхлорат триметиламмония

С многоосновными кислотами могут образовываться не только средние, но и кислые соли :

диметиламин гидросульфат диметиламмония

метилизобутиламин дигидроортофосфат метилизобутиламмония

Первичные ароматические , а так же вторичные и третичные жирноароматические амины с разбавленными водными растворами сильных кислот тоже дают соли :

Так же способны образовывать соли под действием концентрированных сильных кислот , но при разбавлении водой эти соли гидролизуются , давая слабое основание, то есть исходный амин :

Как очень слабые основания, не дают солей ни с концентрированной соляной, ни с серной кислотами. Правда, трифениламин всё же даёт с хлорной кислотой перхлорат:

.

Первичные алифатические амины реагируютв две стадии: на первой образуется крайне нестойкая в воде даже при охлаждении соль диазония , которая на второй стадии реагирует с водой с образованием спирта :

пропиламин хлорид пропилдиазония

пропанол-1

В реакции первичного амина с нитритом натрия и соляной кислотой происходит выделение газа (хорошо видны пузырьки) и рыбный запах амина изменяется на спиртовый – это качественная реакция на первичный алифатический амин.

Если просуммировать две приведённые выше реакции, то получим:

Вторичные амины реагируют совершенно иначе: под действием нитрита натрия и соляной кислоты образуется N-нитрозамин - весьма стойкое даже при нагревании соединение:

метилэтиламин N-нитрозометилэтиамин

В реакции вторичного алифатического амина с нитритом натрия и соляной кислотой происходит образование желтого масла, плохо растворимого в воде и с крайне неприятным запахом – это качественная реакция на вторичный алифатический амин.

Нитрозамины - канцерогены: вне зависимости от места и способа попадания в организм подопытного животного вызывают рак печени. Широко применяются в экспериментальной онкологии. Действуют резорптивно, то есть через кожу.

Третичные алифатические амины реагируют из смеси нитрита натрия и соляной кислоты только с кислотой :

Видимых эффектов в этой реакции нет. Запах ослабевает.

Первичные ароматические амины реагируют с образованием относительно стойкой при температурах от 0 до 5 о С соли диазония . Эта реакция впервые опубликована в 1858 году в немецком химическом журнале Петером Гриссом и носит его имя:

В реакцию Грисса вступают многочисленные гомологи анилина, содержащие алкильные заместители в о-,м - и п -положении к аминогруппе:

Так же в неё вступают производные анилина, содержащие электроноацепторные, электронодонорные заместители и заместители особой группы, например:

С бромоводородной кислотой реакция проходит быстрее, но используется редко и только в лаборатории по причине дороговизны и дефицитности этой кислоты.

На производстве соли диазония сразу же используют для проведения следующих стадий синтеза, но в лаборатории их часто выделяют по реакции обмена с насыщенным раствором тетрафторобората натрия:

Соли диазония чаще всего используют для получения многочисленных азокрасителей по реакции азосочетания с фенолами (нафтолами) и ароматическими третичными аминами, например:

Получившийся азокраситель является рН-индикатором: в кислой среде за счёт образования водородной связи он имеет плоскую структуру, в которой электронодонорное влияние гидроксильной группы ослаблено – эта форма окрашена в жёлтый цвет. В щелочной от гидроксильной группы отрывается протон, возникает «фенолят-ион», являющийся сильнейшим ЭД-заместителем, и окраска меняется на красно-оранжевую:

Роль соды в ходе реакции азосочетания – связывание образующейся соляной (или другой сильной) кислоты в кислую соль – гидрокарбонат натрия:

Смесь карбоната и гидрокарбоната натрия является буферным раствором, создающим слабо-щелочную среду.

С третичными ароматическими аминами азосочетание должно проходить в слабо кислой среде, что обеспечивается добавкой солей, гидролизующихся по аниону, например, ацетата натрия. В сильно кислой среде амин даёт соль аммония, катион которой с катионом диазония естественно не реагирует.

Ацетат натрия мгновенно реагирует с образующейся соляной кислотой. В результате образуется буферный раствор, состоящий из слабой уксусной кислоты и избыточного ацетата натрия. Он обеспечивает слабокислую среду:

Вторичные ароматические амины реагируют с нитритом натрия и соляной кислотой с образованием N-нитрозаминов. Например, N-метиланилин даёт N-нитрозо-N-метиланилин – жёлтое масло с крайне неприятным запахом, отвердевающее при 13 О С:

Ароматические N-нитрозоамины как и алифатические – канцерогены. Так же вызывают рак печени, так же применяются в экспериментальной онкологии.

Ароматические N-нитрозоамины под действием сухих хлоро- или бромоводородов или под действием концентрированной серной кислоты претерпевают перегруппировку впервые опубликованную в 1886 году в немецком химическом журнале О.Фишером и Е.Хеппом. В указанных условиях нитрозогруппа селективно переносится в п -положение:

Полученный в результате перегруппировки 4-нитрозо-N-метиланилин обладает совершенно иными физическими свойствами и биологической активностью. Это зелёное твёрдое вещество с температурой плавления 113 О С. В растворах в органических растворителях флюоресцирует. Канцерогеном не является, правда, вызывает дерматиты.

Третичные ароматические амины реагируют с нитритом натрия и соляной кислотой, давая С-нитрозосоединения . Нитрозогруппа селективно направляется в п -положение:

С-нитрозосоединения легко восстанавливаются водородом на никеле Ренея. При этом получаются несимметричные диалкилдиамины, например:

Соли алифатических и ароматических аминов могут быть легко переведены обратно в амины действием щелочей, например:

перхлорат пропиламмония пропиламин

гидросульфат метилпропиламмония метилпропиламин

Четвертичные аммониевые основания, наоборот, могут быть переведены вчетвертичные аммониевые соли действием кислот:

Гидроксид диметилэтилизопропиламмония хлорид диметилэтилизопропиламмония

Как видно это обычная реакция нейтрализации щёлочи кислотой – получаются соль и вода.

На стр.19 данного пособия было высказано предположение о лёгкости протекания в ароматических аминах реакций электрофильного замещения в орто - и пара -положения бензольного ядра. Действительно анилин легко бромируется сразу во все эти положения:

N,N-диалкиланилины сульфируются, нитруются, и диазотируются в орто - и пара -положения:

Ацетатом натрия сильная комплексная кислота переводится в слабую – уксусную:

Применение аминов

Простейший первичный амин – метиламин применяется в синтезах инсектицидов, фунгицидов, ускорителей вулканизации, поверхностно-активных веществ (ПАВ), лекарственных средств, красителей, ракетных топлив, растворителей. Например, N-метил-2-пирролидон – популярный растворитель для лаков и некоторых красителей получают взаимодействием метиламина с γ-бутиролактоном (циклическим сложным эфиром 4-оксибутановой кислоты):

γ-бутиролатон N-метил-2-пирролидон

Простейший вторичный амин – диметиламин применяется в синтезах инсектицидов, гербицидов, ускорителей вулканизации, поверхностно-активных веществ (ПАВ), многих лекарственных средств, красителей и таких важных растворителей как диметилфориамид (ДМФА), диметилацетамид (ДМАА) и гексаметилфосфотриамид (ГМФТА) или гексаметапол. ДМФА в промышленности получают, например, путём взаимодействия диметиламина с метиловым эфиром муравьиной кислоты:

метилформиат диметиламин ДМФА метанол

ДМАА в промышленности получают путём взаимодействия диметиламина с уксусным ангидридом:

уксусный ангидрид ДМАА

Промышленный синтез гексаметапола заключается во взаимодействии диметиламина с хлорокисью фосфора:

оксидтрихлорид фосфора ГМФТА

Простейший третичный амин – триметиламин применяется в синтезах четвертичных аммониевых оснований, флотоагентов, ретардантов, кормовых добавок. Например, последняя стадия синтеза карбахолина – лекарственного препарата, применяющегося при лечении глаукомы и послеоперационной атонии кишечника или мочевого пузыря, заключается во взаимодействии триметиламина с карбамоильным производным этиленхлоргидрина:

карбахолин

Катионные ПАВ получаются аналогично:

хлорид триметилалкиламмония

Этиламин применяется в производстве красителей, ПАВ, гербицидов. Например, симазин – гербицид для защиты от сорняков кукурузы и овощей получается взаимодействием этиламина с расчётным количеством хлорцианура в щелочной среде:

хлорцианур симазин

Диэтиламин применяется в производстве красителей, пестицидов, ускорителей вулканизации каучуков, ингибиторов коррозии, лекарственных препаратов, репеллентов. Например, широко известное средство от комаров – ДЭТА получают по реакции:

хлорангидрид м -толуиловой кислоты N,N-диэтил-м -толуамид

Изопропиламин, бутиламин, изобутиламин, втор -бутиамин и трет- бутиламины применяются в аналогичных производствах.

1,6-гександиамин широко применяетсядля синтеза нейлона путём реакции поликонденсации с 1,4-бутандикарбоновой (адипиновой) кислотой:

Среди лекарственных препаратов очень многие содержат аминогруппы различных видов. Так, например, из 1308 препаратов, приведённых в справочнике М.Д. Машковского, не менее 70 являются первичными аминами, не менее 52 вторичными и не менее 108 третичными. Кроме того среди лекарств имеется 41 четвертичная аммониевая соль и более 70 амидов карбоновых кислот, 26 амидов арилсульфокислот и 12 амидов производных ортофосфорной кислоты. Есть также циклические амиды – лактамы. Их 5 наименований. Производных природных аминокислот – 14 наименований. Ниже приведены примеры лекарственных препаратов, содержащих перечисленные функциональные группы:

Анестезин – этиловый эфир п -аминобензойной кислоты. Является первичным ароматическим амином и сложным эфиром одновременно.

Оказывает местноанестезирующее действие. Применяется для обезболивания раневых и язвенных поверхностей, при рвоте беременных, морской и воздушной болезнях.

Баклофен – 4-амино-3-(п -хлор)фенилбутановая кислота. Является первичным алифатическим амином, сложным эфиром и галогенпроизводным бензольного ряда одновременно.

Уменьшает мышечное напряжение, оказывает анальгезирующее действие. Применяется при рассеянном склерозе.

Салбутамол – 2-трет -бутиламино-1-(4"-окси-3"-оксиметил)фенилэтанол. Является вторичным алифатическим амином, вторичным и первичным спиртами и фенолом одновременно.

Оказывает бронхорасширяющее действие и препятствует преждевременным схваткам у беременных женщин. Применяется при бронхиальной астме и в акушерской практике.

Ортофен – натровая соль 2-(2",6"-дихлор)фениламинофенилуксусной кислоты. Является вторичным ароматическим амином, солью карбоновой кислоты и галогенпроизводым бензольного ряда одновременно.

Оказывает противовоспалительное, анальгезирующее и жаропонижающее действие. Применяется при остром ревматизме, ревматоидном артрите, болезни Бехтерева, артрозах, спондилоартрозах.

Изоверин – дигидрохлорид N-изоамил-1,5-пентандиамина. Является диаммонийной солью первичного и вторичного аминов одновременно.

Понижает артериальное давление, повышает тонус и усиливает сокращения мускулатуры матки. Применяется в качестве родоускоряющего средства и для стимулирования сокращения матки в послеродовом периоде.

Метиленовый синий – хлорид N,N,N’,N’-тетраметилтионина. Является одновременно и третичным жирно-ароматическим амином и аммонийной солью такого же амина. Кроме того содержит гетероароматический цикл с «пиридиновым» атомом азота.

Применяют наружно в качестве антисептического средства при ожогах, пиодермии и фолликулитах. При циститах и уретритах промывают полости 0,02% раствором синего цвета.

Пентамин – дибромид 3-метил-1,5-бис-(N,N-диметил-N-этил)аммоний-3-азапентана. Является одновременно и третичным алифатическим амином и дважды четвертичной аммониевой солью таких же аминов.

Обладает ганглиоблокирующей активностью. Применяют при гипертонических кризах, спазмах периферических сосудов, спазмах кишечника и желчевыводящих путей, почечной колике, для купирования острых приступов бронхиальной астмы, при отёках лёгких и мозга.

Никотинамид – амид 3-пиридинкарбоновой кислоты. Является амидом карбоновой кислоты и производным азотсодержащего гетероароматического цикла – пиридина.

Обладает противопеллагрическими свойствами, улучшает углеводный обмен, действует положительно при лёгких формах диабета, заболеваниях печени, сердца, при язвенной болезни желудка и двенадцатиперстной кишки. Применяют при гастритах с пониженной кислотностью, острых и хронических гепатитах, циррозах, при спазмах сосудов конечностей, почек и головного мозга.

Сульфадимезин – 2-(п- аминобензолсульфамидо)-4,6-диметилпиримидин. Представитель многочисленной группы сульфаниламидных препаратов. Является одновременно сульфаниламидом, первичным ароматическим амином и производным азотсодержащего гетероароматического цикла – пиримидина.

Как и все препараты этой группы сульфадимезин является активным противомикробным средством. Его применяют при пневмококковых, стрептококковых, менингококковых инфекциях, при сепсисе, гонорее, а также при инфекциях, вызванных кишечной палочкой и другими микробами.

Фопурин – 6-диэтиленамидофосфамидо-2-диметиламино-7-метилпурин. Является одновременно трижды фосфамидом, третичным ароматическим амином и производным азотсодержащего гетероароматического бицикла – пурина

Гемодез – 6% водно-солевой раствор низкомолекулярного поливинилпирролидона. Элементарное звено полимера содержит лактамное кольцо.

Связывает токсины, циркулирующие в крови, и быстро выводит их через почечный барьер. Применяют при дизентерии, диспепсии, сальмонеллёзе, при ожоговой болезни в фазе интоксикации.

Гистидин – L-β-имидазолилаланин или L-α-амино-β-(4-имидазолил)пропионовая кислота. Является α-аминокислотой и производным азотсодержащего гетероароматического цикла – имидазола

Гистидин – незаменимая аминокислота; содержится в разных органах, входит в состав карнозина – азотистого экстрактивного вещества мышц. В организме подвергается декарбоксилированию с образованием гистамина – одного из химических факторов (медиаторов), участвующих в регуляции жизненных функций.

Ангиотензинамид – ацетат L-аспарагинил-L-аргинил-L-валил-L-тирозинил-L-валил- L - гистидинил – L – пролил - L- фенилаланина. Представляет собой уксуснокислую соль октапептида, состоящего из природных α-аминокислот.

При шоковых состояниях применяется для быстрого и сильного сужения сосудов внутренних органов, кожных покровов, почек. Ангиотензинамид обладает также способностью сокращать гладкую мускулатуру матки, кишечника, мочевого и желчного пузыря. Он стимулирует выделение адреналина из надпочечников и продукцию альдостерона.

Амины. Определение
Классификация аминов по числу атомов водорода в аммиаке, замещённых на радикалы
Классификация аминов по характеру радикалов, связанных с атомом азота
Изомерия и номенклатура алифатических аминов
Способы получения аминов
Получение аминов из других азотсодержащих соединений
Из нитросоединений
Из нитрозосоединений
Из оксимов
Из гидразонов
Из амидов карбоновых кислот
Из нитрилов карбоновых кислот: 7
Получение аминов из соединений других классов
Из альдегидов и кетонов по реакции Лейкарта-Валлаха
Получение первичных алифатических аминов путем алкилирования аммиака
Получение вторичных алифатических аминов путем алкилирования первичных
Получение третичных алифатических аминов путем алкилирования вторичных
Получение четвертичных аммониевых солей из третичных аминов
Получение четвертичных аммониевых оснований из четвертичных аммониевых солей
Термолиз четвертичных аммониевых оснований
Алкилирование первичных ароматических аминов до симметричных
третичных аминов
Четырёхстадийный синтез вторичных жирно-ароматических аминов
Получение чистых первичных аминов по Габриэлю
Получение аминов из спиртов
Получение ароматических аминов
Восстановление ароматических нитросоединений по Н.Н. Зинину
Восстановление ароматических нитросоединений по Бешану
Каталитическое восстановление ароматических нитросоединений водородом
Физические свойства алифатических аминов
Агрегатное состояние алифатических аминов
Зависимость температур кипения алифатических аминов от строения
Растворимость алифатических аминов в воде и органических растворителях
Физические свойства ароматических аминов
Агрегатное состояние и растворимость ароматических аминов
Химические свойства аминов
Связь электронного строения аминов с основностью
Константы основности и величины рК b для алифатических, ароматических и гетероциклических аминов и некоторых родственных соединений
Реакции аминов с кислотами
Взаимодействие аминов с нитритом натрия и соляной кислотой
Перевод первичных алифатических аминов в спирты через диазосоединения
Перевод вторичных алифатических аминов в N-нитрозосоединения
Канцерогенность алифатических N- нитрозаминов
Взаимодействие третичных алифатических аминов с нитритом натрия
и соляной кислотой
Перевод первичных ароматических аминов в соли диазония
Выделение солей диазония из растворов в виде тетрафтороборатов
Реакция азосочетания с фенолами (нафтолами)
Азокрасители как рН-индикаторы
Реакция азосочетания с третичными ароматическими аминами
Перевод вторичных жирно-ароматических аминов в N-нитрозамины
Канцерогенность жирно- ароматических N- нитрозаминов
Перегруппировка Фишера- Хеппа
Перевод третичных ароматических аминов в С-нитрозосоединения
Каталитическое восстановление ароматических С- нитрозосоединений водородом
Взаимодействие солей алифатических и ароматических аминов со щелочам
Взаимодействие четвертичных аммониевых оснований с кислотами
Реакции электрофильного замещения в ароматических аминах
Применение аминов
Применение метил- и диметиламинов
Получение популярных органических растворителей: ДМФА, ДМАА и ГМФТА
Применение триметил- и этиламинов
Применение диэтиламина
Применение диаминов для получения полиамидных полимеров
Лекарственные препараты – амины и производные аминов
Анестезин
Баклофен
Салбутамол
Ортофен
Изоверин
Метиленовый синий
Пентамин
Никотинамид
Сульфадимезин
Фопурин
Гемодез
Гистидин
Ангиотензинамид
Содержание

Лекция № 13

АМИНЫ

План

    1. Классификация.
    2. Методы получения.
    3. Химические свойства.

    4. производные.


Лекция № 13

АМИНЫ

План

    1. Классификация.
    2. Методы получения.
    3. Химические свойства.
    4. Биологически активные амины и их
      производные.

Амины можно
рассматривать как производные аммиака, в котором атомы водорода замещаются на
углеводородные радикалы.

1. Классификация

В зависимости от числа углеводородных радикалов, связанных с атомом азота,
различают первичные, вторичные и третичные амины, а также четвертичные
аммониевые соли.

По природе углеводородного радикала, связанного
с атомом азота, различают алкиламины, алкилариламины, ариламины,
гетероциклические амины.

Алкиламины содержат только алифатические
углеводородные радикалы, например:

Ариламины содержат ароматические
радикалы с атомом азота в ароматическом кольце, например:

Алкилариламины содержат
алифатические и ароматические радикалы, например:

Гетероциклические амины содержат
атом азота в цикле, например:

2. Методы получения.


3. Химические
свойства.

Химические свойства аминов определяются в основном присутствием атома азота с
неподеленной парой электронов, наличие которой обуславливает их основные и
нуклеофильные свойства.

Основные и кислотные свойства
Алифатические амины являются
сильными основаниями (=10-11) и превосходят по основности аммиак. Их водные растворы имеют
щелочную реакцию.

RNH 2 + H 2 O = RNH 3 + + OH —

Ароматические амины – слабые основания (=3-5), что связано с разрушением
при протонированиии стабильной сопряженной системы, в которой участвует
неподеленная пара электронов азота (см. лек. №4).

При взаимодействии с кислотами амины образуют
растворимые в воде аммониевые соли.

RNH 2 + HX ® RNH 3 + X —

Первичные и вторичные амины являются слабыми N-H
кислотами (рК а =33-35) и образуют соли при взаимодействии с активными
металлами.

RNH 2 + Na ® RNH — Na + + 1/2 H 2

Нуклеофильные свойства

Алкилирование аминов

Амины обладают нуклеофильными свойствами и алкилируются алкилгалогенидами и
спиртами (см. методы получения).

Ацилирование аминов

Амины ацилируются карбоновыми кислотами и их производными с образованием
амидов карбоновых кислот (см. лек. №12).

2RNH 2 + R / COX ® R / CONHR + RNH 3 X

2R 2 NH + R / COX ® R / CONR 2 + R 2 NH 2 X

Взаимодействие аминов с азотистой
кислотой

Первичные, вторичные и третичные амины по-разному взаимодействуют с азотистой
кислотой, что используется для установления типа амина. Неустойчивую азотистую
кислоту генерируют действием сильной кислоты на нитриты.

Третичные алифатические амины при обычной температуре с азотистой
кислотой не взаимодействуют.

Вторичные амины образуют с азотистой кислотой устойчивые нитрозамины – жидкие или твердые продукты желтого цвета.

R 2 NH + NaNO 2 + HCl ® R 2 N-N=O + NaCl + H 2 O

нитрозамин Нитрозамины
являются сильными канцерогенами. Показана возможность синтеза нитрозаминов в
желудке человека из содержащихся в пище и лекарственных препаратах вторичных
аминов и нитритов Канцерогенное действие нитрозаминов основано на их способности
алкилировать нуклеофильные центры ДНК, что приводит к онкогенным мутациям.

Первичные алифатические амины реагируют с азотистой кислотой с
выделением газообразного азота. Реакция идет через образование неустойчивого
первичного нитрозамина, который изомеризуется в диазогидроксид, превращающийся
далее в соль диазония.

нитрозамин диазогидроксид соль
диазония
Дальнейший ход реакции зависит
от природы углеводородного радикала.

Если R – алифатический радикал, то соль диазония очень неустойчива и
немедленно разлагается с образованием молекулы азота и карбокатиона, который
затем взаимодействует с находящимися в реакционной среде нуклеофилами (например,
с растворителем) или отщепляет протон и дает продукт элиминирования. Например,
превращения катиона н-пропилдиазония могут быть представлены следующей схемой:

Реакция не имеет препаративного значения.
Процесс используется в аналитических целях для количественного определения
первичных алифатических аминов, в том числе природных a -аминокислот, по объему
выделяющегося азота.

Соли арилдиазония более устойчивы и могут
быть выделены из реакционной смеси. Они являются высокореакционноспособными
соединениями и широко используются в органическом синтезе.

Реакции солей арилдиазония

Процесс получения ароматических диазосоединений
называется диазотированием и выражается следующим суммарным
уравнением.

ArNH 2 + NaNO 2 + 2HCl ® ArN 2 + Cl — + NaCl + 2H 2 O

Реакции солей арилдиазония можно разделить на
два типа: реакции с выделением азота и реакции без выделения азота.

Реакции, протекающие с выделением азота. Этот тип реакций представляет собой замещение в ароматическом кольце, уходящей
группой в котором является молекула азота N 2 .

Реакции используются для введения различных
заместителей в ароматическое кольцо.

Реакции, протекающие без выделения азота. Наиболее важной реакцией этого типа является азосочетание . Катион
диазония обладает слабыми электрофильными свойствами и вступает в реакции
электрофильного замещения с аренами, содержащими сильные электронодонорные
заместители. При этом образуются азосоединения .

Азосоединения содержат длинную систему
сопряженных связей и поэтому окрашены. Они используются как красители.
Образование окрашенных соединений при взаимодействии солей арилдиазония с
ароматическими аминокислотами (тирозин, гистидин) используется для их
качественного и количественного определения.

Реакции ароматического кольца
ариламинов

Аминогруппа является сильным активирующим
заместителем и ориентантом II рода (см. лек. №8).

Анилин легко бромируется бромной водой с
образованием триброманилина.

В большинстве реакций электрофильного
реакционноспособная аминогруппа предварительно защищается путем ацилирования.
После проведения реакции ацильную защиту снимают кислотным или щелочным
гидролизом.

4. Биологически активные амины и их
производные.

Биологическую активность проявляют гетерофункциональные соединения,
содержащие аминогруппу – аминокарбоновые кислоты, аминоспирты, аминофенолы,
аминосульфокислоты.

Этаноламин и его производные .

Этаноламин (коламин)
HOCH
2 CH 2 NH 2 является структурным компонентом сложных липидов (см. лек. №18). В организме
образуется при декарбоксилировании аминокислоты серина (см. лек. № 16).

Холин HOCH 2 CH 2 N + (CH 3) 2 – структурный компонент фосфолипидов; витаминоподобное
вещество, регулирующее жировой обмен; предшественник в биосинтезе
ацетилхолина.

Ацетилхолин CH 3 COOCH 2 CH 2 N + (CH 3) 2 — посредник при передаче нервных импульсов
(нейромедиатор). Накопление ацетилхолина в организме приводит к непрерывной
передаче нервных импульсов и сокращению мускульной ткани. На этом основано
действие нервнопаралитических ядов (зарин,табун), которые ингибируют действие
фермента ацетилхолинэстеразы, катализирующего расщепление ацетилхолина.

Катехоламины – дофамин,
норадреналин, адреналин – биогенные амины, продукты метаболизма аминокислоты
фенилаланина.

Катехоламины выполняют роль гормонов и
нейромедиаторов. Адреналин является гормоном мозгового слоя надпочечников,
норадреналин и дофамин – его предшественниками. Адреналин участвует в регуляции
сердечной деятельности, обмена углеводов. Увеличение концентрации катехоламинов
– типичная реакция на стресс. Их роль заключается в мобилизации организма на
осуществление активной мозговой и мышечной деятельности.

Структурно близки к катехоламинам некоторые
природные и синтетические биологически активные вещества, также содержащие
аминогруппу в b -положении к ароматическому кольцу.

Фенамин является стимулятором центральной
нервной системы, снимает чувство усталости. Эфедрин – алкалоид, обладающий
сосудорасширяющим действием.

Производные п-аминофенола парацетамол и фенацетин
лекарственные препараты, обладающие обезболивающим и жаропонижающим
действием.

В настоящее время фенацетин рассматривается как
вещество, возможно являющееся канцерогеном для человека.

п-Аминобензойная кислота и ее
производные.

п-Аминобензойная кислота –
витаминоподобное вещество, фактор роста микроорганизмов; участвует в синтезе
фолиевой кислоты (витамина В С). Сложные эфиры п-аминобензойной
кислоты вызывают местную анестезию.

Анестезин и новокаин применяются в виде растворимых в воде гидрохлоридов.

Сульфаниловая кислота (п-аминобензолсульфокислота) и
сульфаниламиды.

Амид сульфаниловой кислоты (стрептоцид) и его N-замещенные производные –
эффективные антибактериальные средства. Синтезировано более 5000 производных
сульфаниламида. Наибольшую активность проявляют сульфониламиды, содержащие
гетероциклические основания.

Антибактериальное действие сульфамидных
препаратов основано на том, что они имеют структурное сходство с
п-аминобензойной кислотой и являются ее атиметаболитами. Присутствующие в
бактериальной среде сульфаниламиды включаются в процесс биосинтеза фолиевой
кислоты, конкурируя с п-аминобензойной кислотой, и на определенной стадии
блокируют его, что ведет к гибели бактерий. Сульфаниламиды не влияют на организм
человека, в котором фолиевая кислота не синтезируется.

ТЕМА ЛЕКЦИИ: АМИНЫ И АМИНОСПИРТЫ

Вопросы:

Общая характеристика: строение, классификация, номенклатура.

Методы получения

Физические свойства

Химические свойства

Отдельные представители. Способы идентификации.

Общая характеристика: строение, классификация, номенклатура

Аминами называются производные аммиака, молекуле которого атомы водорода замещены на углеводородные радикалы.

Классификация

1– В зависимости от числа замещенных атомов водорода аммиака различают амины :

первичные содержат аминогруппу аминогруппу (–NH 2), общая формула: R–NH 2 ,

вторичные содержат иминогруппу (–NH),

общая формула: R 1 –NH–R 2

третичные содержат атом азота, общая формула: R 3 –N

Известны также соединения с четвертичным атомом азота: четвертичный гидроксид аммония и его соли.

2– В зависимости от строения радикала амины различают:

– алифатические (предельные и непредельные)

– алициклические

– ароматические (содержащие в ядре аминогруппу или боковой цепи)

– гетероциклические.

Номенклатура, изомерия аминов

1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин : метиламин СН 3 –NН 2 , диметиламин СН 3 –NН–СН 3 , триметиламин (СН 3) 3 N, пропиламин СН 3 СН 2 СН 2 –NН 2 , фениламин С 6 Н 5 – NН 2 и т. д.

2. По номенклатуре ИЮПАК аминогруппу рассматривают как функциональную группу и ее название амино- ставят перед на­званием основной цепи:


Изомерия аминов зависит от изомерии радикалов.

Способы получения аминов

Амины могут быть получены различными способами.

А) Действием на аммиак галогеналкилами

2NH 3 + CH 3 I ––® CH 3 – NH 2 + NH 4 I

Б) Каталитическое гидрирование нитробензола молекулярным водородом:

С 6 Н 5 NО 2 ––® С 6 Н 5 NН 2 + Н 2 О

нитробензол кат анилин

В) Получение низших аминов (С 1 –С 4) путем алкилирования спиртами:

350 0 C, Al 2 O 3

R–OH + NH 3 –––––––––––® R–NH 2 +H 2 O



350 0 C, Al 2 O 3

2R–OH + NH 3 –––––––––––® R 2 –NH +2H 2 O

350 0 C, Al 2 O 3

3R–OH + NH 3 –––––––––––® R 3 –N + 3H 2 O

Физические свойства аминов

Метиламин, диметиламин и триметиламин - газы, сред­ние члены ряда аминов - жидкости, высшие - твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. Высшие амины в воде нерастворимы. Низшие амины имеют неприятный запах, несколько напоми­нающий запах испорченной рыбы. Высшие амины или не имеют запаха, или обладают очень слабым запахом. Ароматические амины представляют собой бесцветные жидкости или твердые вещества, обладающие неприятным запахом и ядовиты.

Химические свойства аминов

Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом азота затрачивает на образование трех ковалентных связей три электрона, а два остаются свободными.

Наличие свободной электронной пары у атома азота дает ему возможность присоединять протон, поэтому амины подобны аммиаку, проявляют основные свойства, образуют гидроксиды, соли.

Солеобразование. Амины с кислотами дают соли, кото­рые под действием сильного основания вновь дают свободные амины:


Амины дают соли даже со слабой угольной кислотой:


Как и аммиак, амины обладают основными свойствами что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония:


При растворении амина в воде часть протонов воды расходуется на образование катиона; таким образом, в раство­ре появляется избыток гидроксид-ионов, и он имеет щелочные свойства, достаточные для окрашивания растворов лакмуса в синий цвет и фенолфталеина в малиновый. Основность аминов предельного ряда колеблется в очень небольших пределах и близка к основности аммиака.

Эффект метильных групп несколько повышает основ­ность метил- и диметиламина. В случае триметиламина метильные группы уже затрудняют сольватацию образующегося катиона и уменьшают его стабилизацию, а следовательно, и основность.

Соли аминов следует рассматривать как комплексные со­единения. Центральным атомом в них является атом азота, координационное число которого равно четырем. Атомы водорода или алкилы связаны с атомом азота и расположены во внутренней сфере; кислотный остаток расположен во внешней сфере.

Ацилирование аминов. При действии на первичные и вторичные амины некоторых производных органических кис­лот (галогенангидридов, ангидридов и др.) образуются амиды:


Вторичные амины с азотистой кислотой дают нитрозоамины - желтоватые жидкости, мало растворимые в воде:


Третичные амины устойчивы к действию разбавленной азотистой кислоты на холоду (образуют соли азотистой кисло­ты), в более жестких условиях один из радикалов отщепляется и образуется нитрозоамин.

Диамины

Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С0 2 воздуха. Диамины образуют устойчивые со­ли с двумя эквивалентами кислоты.

Этилендиамин (1,2-этандиамин) H 2 NCH 2 СН 2 NН 2 . Он является простейшим диамином; может быть получен дейст­вием аммиака на этиленбромид:


Тетраметилендиамин (1,4-бутандиамин), или путресцин, NН 2 СН 2 СН 2 СН 2 СН 2 NH 2 и пентаметилендиамин (1,5-пентандиамин) NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 , или када­верин. Они были открыты в продуктах разложения белковых веществ; образуются при декарбоксилировании диаминокислот и названы птомаинами (от греч.- труп), их счита­ли ранее «трупными ядами». В настоящее время выяснено, что ядовитость гниющих белков вызвана не птомаинами, а при­сутствием других веществ.

Путресцин и кадаверин образуются в результате жизнеде­ятельности многих микроорганизмов (например, возбудителей столбняка и холеры) и грибков; они встречаются в сыре, спо­рынье, мухоморе, пивных дрожжах.

Некоторые диамины применяются в качестве сырья для получения полиамидных волокон и пластмасс. Так, из гекса-метилендиамина NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 получено весьма ценное синтетическое волокно - найлон (США) или анид (Россия).

Аминоспирты

Аминоспирты - соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы.

Аминоэтанол (этаноламин) НО-СН 2 СН 2 -NH 2 , или коламин.

Этаноламин - густая маслянистая жидкость, смешивает­ся с водой во всех отношениях, обладает сильными щелочны­ми свойствами. Hаряду с моноэтаноламином получаются также диэтаноламин и триэтаноламин:


Холин входит в состав лецитинов - жироподобных ве­ществ, весьма распространенных в животных и растительных организмах, и может быть выделен из них. Холин представляет собой кристаллическую, весьма гиг­роскопичную, легко расплывающуюся на воздухе массу. Он обладает сильными щелочными свойствами и с кислотами лег­ко образует соли.

При ацилировании холина уксусным ангидридом образу­ется холинацетат, называемый также ацетилхолином:



Ацетилхолин играет крайне важную биохимическую роль, так как является медиатором (посредником), передающим воз­буждение от нервных рецепторов к мышцам.

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства. Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов. Для аминов характерны ярко выраженные основные свойства. Водные растворы алифатических аминов проявляют щелочную реакцию. Алифатические амины – более сильные основания, чем аммиак. Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку не-поделенная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его π-электронами.

На основность аминов влияют различные факторы: электронные эффекты углеводородных радикалов, пространственное экранирование радикалами атома азота, а также способность образующихся ионов к стабилизации за счет сольватации в среде растворителя. В результате донорного эффекта алкильных групп основность алифатических аминов в газовой фазе (без растворителя) растет в ряду: первичные < вторичные < третичные. Основность ароматических аминов зависит также от характера заместителей в бензольном кольце. Электроноакцепторные заместители (-F, -Cl, -NO2 и т. п.) уменьшают основные свойства ариламина по сравнению с анилином, а электронодонорные (алкил R-, -OCH3, -N(CH3)2 и др.), напротив, увеличивают.

1. CH3-NH 2 + Н2O → OH (взаимодействие с водой)

2. (CH 3)2NH + HCl → [(CH3)2NH2]Cl хлорид диметиламмония (взаимодействие с кислотами)

[(CH 3)2NH 2]Cl + NaOH → (CH 3)2NH + NaCl + H2O (взаимодействие солей аминов со щелочами)

(ацителирование, с третичными аминами не идет)

4. R-NH2 + CH3I → I¯ →NH3 → CH3NHR + NH4I (алкилирование)

5. Взаимодействие с азотистой кислотой: строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различия первичных, вторичных и третичных аминов.

а) R-NH2 + HNO2 → R-OH + N2 + H2O (первичные жирные амины)

б) С6Н5-NH2 + NaNO2 + HCl → [С6Н5-N≡N]+Cl¯ – соль диазония (первичные ароматические амины)

в) R2NH + Н-О-N=O → R2N-N=O (N-нитрозамин) + Н2O (вторичные жирные и ароматические амины)

г) R3N + Н-О-N=O → при низкой температуре нет реакции (третичные жирные амины)

(третичные ароматические амины)

Свойства анилина. Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и аммиаком, но под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения по сравнению с бензолом.

C6H5-NH2 + HCl → Cl = C6H5NH2 HCl

C6H5NH2 HCl + NaOH → C6H5NH2 + NaCl + H2O

C6H5NH2 + CH3I →t → +I¯

Аминокислоты

Аминокислотами называются гетеро-функциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу. В зависимости от взаимного расположения амино– и карбоксильной групп аминокислоты подразделяют на α-, β-, γ– и т. д. По ИЮПАК, для наименования аминокислот группу NH2- называют приставкой амино-, указывая цифрой номер углеродного атома, с которым она связана, а затем следует название соответствующей кислоты.

2-аминопропановая кислота (α-аминопропановая, α-аланин)