Основные виды картографических проекций.

В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима для прокладки и изучения маршрута полета; измерения путевых углов и расстояний между пунктами маршрута; определения географических координат пунктов; нанесения точек расположения радиотехнических средств, обеспечивающих полет; получения данных о магнитном склонении в районе полета; изучения рельефа местности.

В полете карта применяется для ведения визуальной и радиолокационной ориентировки; контроля пути и прокладки линий положения самолета; определения навигационных элементов полета.

Карты нужны также службе движения для руководства полетами и контроля за их выполнением. Авиационные карты создаются в определенных картографических проекциях.

Картографической проекцией называется способ изображения земной поверхности на плоскости. Сущность любой картографической проекции состоит в том, что поверхность земного шара переносится сначала на глобус определенного размера, а затем с глобуса по намеченному способу на плоскость.

При переносе поверхности Земли с глобуса на плоскость приходится в одних местах растягивать изображения, а в других сжимать, т.е. допускать искажения. Каждая проекция имеет определенную степень искажения длин, направлений и площадей и определенный вид сетки меридианов и параллелей. Выбор проекции для построения карты зависит от того, каким требованиям должна отвечать данная карта.

По виду сетки меридианов и параллелей все картографические проекции делятся на конические (поликонические) цилиндрические, и азимутальные.

Конические проекции.

Конические проекции - это проекции, в которых меридианы нормальной сетки изображаются прямыми линиями, сходящимися в точке полюса, а параллели - дугами концентрических окружностей, описанных вокруг полюса. Условно, конические проекции можно представить как изображение поверхности глобуса на боковой поверхности конуса с последующей разверткой этой поверхности на плоскость.



К онические проекции могут строиться на касательном или секущем конусе .

В зависимости от расположения оси конуса относительно оси вращения глобуса конические проекции могут быть нормальные, поперечные и косые. Большинство авиационных карт конической проекции построено в нормальной равноугольной проекции на касательном или секущем конусах.

Равноугольная коническая проекция на касательном конусе. Построение этой проекции (рис. 1) наглядно можно объяснить следующим образом. Все меридианы выпрямляют до соприкосновения с боковой поверхностью конуса. При этом все параллели, кроме параллели касания, будут растягиваться до размеров окружности конуса. Для того чтобы сделать проекцию равноугольной и сохранить подобие фигур,

Рисунок 1. Равноугольная коническая проекция на касательном конусе

производят растягивание меридианов в такой степени, в какой были растянуты параллели в данной точке карты. Затем конус разрезается по образующей и разворачивается на плоскость. Карты в равноугольной конической проекции на касательном конусе имеют следующие свойства:

- меридианы изображаются в виде прямых, сходящихся к полюсу;

- угол схождения меридианов определяется по формуле

где , - разность долгот между заданными меридианами; - широта параллели касания;

Параллели имеют вид дуг концентрических окружностей, расстояния между которыми увеличиваются по мере удаления от параллели касания;

На параллели касания искажения длин отсутствуют, а в полосе ±5° от этой параллели они незначительны и в практике не учитываются;

Локсодромия изображается кривой линией, обращенной своей выпуклостью к экватору;

Ортодромия для расстояний до 1200 км изображается прямой линией, а для больших расстояний имеет вид кривой, обращенной своей выпуклостью в сторону более крупного масштаба.

В равноугольной конической проекции на касательном конусе издаются бортовые карты масштабов 1:2000000; 1:2500000; 1:3000000; 1:4000000 и обзорная карта масштаба 1:5000000.

Рисунок 2. Равноугольная коническая проекция на секущем конусе

Равноугольная коническая проекция на секущем конусе.

Получение этой проекции условно можно представить как изображение поверхности глобуса на боковой поверхности секущего конуса (рис. 2). В этом случае искажения на карте уменьшаются.

Равноугольная коническая проекция на секущем конусе имеет следующие свойства:

Параллели сечения изображаются в главном масштабе, на них отсутствуют искажения длин;

Между параллелями сечения масштаб изображения мельче, а вне их крупнее. Такое изменение масштабов обусловлено тем, что при переносе поверхности Земли на секущий конус изображения между параллелями сечения приходится сжимать, а на внешних сторонах от параллелей сечения несколько растягивать;

В полосе ± 5° от параллелей сечения искажения незначительные и практически с ними можно не считаться при решении некоторых задач самолетовождения;

Угол схождения меридианов:

,

где - разность долгот между заданными меридианами; - широта параллели с наименьшим масштабом. В зависимости от принятого способа распределения искажений на карте эта параллель может не совпадать со средней широтой между параллелями сечения;

Ортодромия изображается кривой, выпуклой в сторону более крупного масштаба, и имеет точку перегиба на параллели наименьшего масштаба. Для расстояний не более 1500 км ее можно принимать за прямую линию;

Локсодромия изображается кривой линией, пересекающей все меридианы под одним и тем же углом.

В нормальной равноугольной конической проекции на секущем конусе издаются бортовые карты масштаба 1:2000000 (Москва - Берлин) и 1:2500000.

Конические проекции

Наименование параметра Значение
Тема статьи: Конические проекции
Рубрика (тематическая категория) Радио

Классификация картографических проекций

Карты и картографические проекции

Картой принято называть уменьшенное изображение земной поверхности на плоскости в определœенном масштабе с нанесением координатной сетки и условных знаков, отображающих земные объекты.

Полетная карта является основным пособием для самолетовождения. Без карты не может выполняться ни один полет.

Карта на земле необходима для прокладки и оцифровки маршрута͵ изучения базовых и запасных аэродромов, выполнения необходимых измерений и расчетов при подготовке к полету, а в полете – для ведения визуальной ориентировки, контроля пути, определœения места самолета.

Авиационная карта должна удовлетворять следующим требованиям:

1. Достоверно и точно отображать состояние местности:

2. Быть наглядной, хорошо читаемой и удобной для работы.

3. Карта должна быть с минимальными угловыми и линœейными искажениями,

удобной для измерений и графических построений.

Картографической проекцией принято называть способ изображения земной поверхности на плоскости. Все картографические проекции различаются по следующим признакам:

1. По характеру искажения;

2. По способу построения координатной сетки:

По характеру искажения проекции бывают:

1. Равноугольные – сохраняется равенство углов между ориентирами и форма фигур.
Размещено на реф.рф
Карты в равноугольной проекции широко применяются в авиации.

2. Равновеликие – сохраняется постоянство отношения площади изображения фигуры на карте к площади этой же фигуры на земной поверхности. В этой проекции нет равенства углов и подобия фигур.

3. Равнопромежуточные – масштаб сохраняется по одному из главных направлении (меридиану и параллелям).

4. Произвольные – не сохраняется ни равенство углов, ни площадей.

По способу построения координатной сетки (меридианов и параллелœей) картографические проекции делятся на цилиндрические, конические, поликонические, азимутальные.

Цилиндрические проекции (проекции Меркатора)

Для изготовления карт в цилиндрической проекции необходима модель Земли, изготовленная из прозрачного материала. В центре модели помещается источник света. Модель земли помещают в цилиндр так, чтобы она касалась экватором стенок цилиндра. Далее производят подсвет. Лучи света распространяются прямолинœейно и всœе точки и линии, имеющиеся на модели, проектируются на поверхность цилиндра. Далее цилиндр разрезается, разворачивается на плоскость. Меридианы и параллели на картах в данной проекции имеют вид взаимно – перпендикулярных линий. Проекция равноугольна, масштаб не одинаков – укрупняется к полюсам. В данной проекции изготовляются морские карты.

В конической проекции поверхность Земли проектируется на боковую поверхность конуса, касающегося к одной из параллелœей. Далее конус разрезается и разворачивается на плоскости. Меридианы в этой проекции изображаются в виде прямых линий, сходящихся к полюсу, а параллели – в виде дуг, параллельных экватору. Проекция равноугольна, искажения масштаба не велико. В случае если ось конуса совпадает с осью вращения Земли, проекция принято называть нормальной. В нормальной конической проекции изготовляются бортовые карты масштаба 1: 4000000 (1см. = 40км), и 1: 2500000 (1см. = 25км).

Конические проекции - понятие и виды. Классификация и особенности категории "Конические проекции" 2017, 2018.

Свернем из листа бумаги конус в виде лавочного «фунтика». Наденем конус на наш проволочный глобус так, чтобы вершина конуса оказалась на продолжении оси глобуса над «северным полюсом». Тогда конус будет касаться глобуса вдоль некоторой параллели — более южной, если конус острый, более северной, если конус тупой. Разрежем меридианы вдоль экватора и на полюсе и, предполагая, что все параллели за исключением параллели касания эластичны, будем распрямлять меридианы так, чтобы меридианы и параллели совпали с поверхностью конуса. Разрезав снова сетку (вместе с бумагой) вдоль одного из меридианов и развернув ее на плоскость, получим равнопромежуточную коническую проекцию, которая сохраняет длины вдоль всех меридианов и вдоль параллели касания. Длины всех остальных параллелей преувеличены, это преувеличение возрастает с удалением от параллели касания, а поэтому преувеличены и площади отдельных клеток.

Подобно цилиндрическим проекциям для получения равновеликой конической проекции следует укоротить длины всех меридианов настолько, чтобы площадь каждой клетки проекции равнялась по величине поверхности соответствующей клетки на глобусе. Напротив, в равноугольной конической проекции меридианы удлиняются в той степени, в которой преувеличены параллели; степень удлинения возрастает по мере удаления от параллели касания.

В картографической практике, вместо касательной, нередко берут конус, секущий глобус по двум параллелям. Этот прием улучшает несколько распределение искажений: между параллелями сечения изображение будет преуменьшено против натуры, вне параллелей сечения — преувеличено; главный масштаб сохранится вдоль двух параллелей сечения.

Все конические проекции имеют параллели в виде концентрических окружностей и прямолинейные меридианы, исходящие из центра параллелей под углами, пропорциональными соответствующим углам в натуре.

От равнопромежуточной конической проекции легко перейти к имеющей широкое распространение проекции Бонна. Для этого сохраним от конической проекции круговые концентрические параллели и средний меридиан. Другие меридианы получим, откладывая на каждой параллели расстояния между меридианами в натуре (разумеется, после перевода их в масштаб карты) и соединяя полученные точки плавными кривыми.

Проекция Бонна сохраняет длины вдоль всех параллелей и среднего меридиана и передает без искажений площадь каждой клетки; она равновелика. Расстояние между параллелями сетки, являющимися концентрическими окружностями, везде является постоянным и равно расстоянию между параллелями в натуре. Таким образом, малая трапеция на глобусе и на проекции имеет равные основания (отрезки параллелей) и высоту.

I loCbO."H.KY l./ipi 1.1 Н11ЛН111ТСН IIJIIII"kllMII , И КЛЧГ1 ТИС lllllll

Типы проекций

мсинтс.н. 1Н.1Ч помсрчмостгн некоторых простсшпнч ii|n> пиши псно.п..|уютсл 1 сомстрпчсскпс фигуры, которые можно разверну гь на плоскость без растяжения н\ по

ВСрХПОСТСЙ. Ollll ll."I.II.IIUIIU"l Г!1 раЗВСр"ГЫВаЮЩИМПСЯ

iii икр ч| и Hiii ми Типичными примерами являются ко uyci.i, цилиндры и плоскости. Картографические про екции систематически проецируют местоположения с поверхности сфероида на условные местоположении на плоской поверхности, используя уравнения карто­графических проекций.

11ерным шагом при проецировании одной поверхности па другую является создание одной или более точек контакта. Каждая такая точка называется точной касания. Как будет показано ниже в разделе «Азиму­тальные проекции (проекции на плоскость)», азиму­тальная проекция проходит по касательной к глобусу только в одной точке. Конусы и цилиндры касаются глобуса вдоль линии, веди поверхность проекции пе­ресекает глобус вместо того, чтобы просто коснуться его поверхности, то полученная в результате проек­ция является секущей, а не касательной. 11езависимо от того, является ли контакт касательным или секу­щим, его место очень значимо, поскольку определяет точку или линии нулевого искажения. .")ту линию ис­тинного масштаба часто называют стандартной ли­нией. 15 общем случае, искажение проекции увеличи­вается с увеличением расстояния отточки контакта.

Многие обычные картографические проекции можно классифицировать в соответствии с используемой для них проекционной поверхностью: конические, цилин­дрические или азимутальные (проекции па плоскость).

(!амаи простая коническая проекция проходит по кл сатедыюй к глобусу идол, линии шпроты. 1)та линия называется einuiuiupiiuioii пиралле.лыо. Меридианы проецируются на коническую понерхносп., сходясь на нершине или и точке конуса. 11араллели проецируют­ся па коническую поиерхность как кольца. Коиуе за-тем "рассекается" вдоль любого меридиана для созда­ния конечной комической проекции, и которой имеют­ся прямые сходящиеся меридианы и параллели, пред­ставленные концентрическими окружностями. Мери­диан, противолежащий линии сечения, етаиокнтся цен-m/XLibiibuH меридианом.

И целом, чем дальше от стандартной нараллелн, тем больше искажение, Соответственно, отсечение керхуш ки конуса создает более точную проекцию, ilroio мож­но достичь, если не использовать полярную область при проецировании объектов. Конические проекции используются дли средпепшротпыхзоп, имеющих ори ентацпю с востока па запад.

Колее сложные конические проекции сои pi или л ни г и г понерхпостыо глобуса и двух местах!)гп просьнпп называются секущими коническими проекцплмм п определяются двумя стандартными параллелями. Хл рактер искажений при секущих проекциях различает ся для районок, расположенных между стандартными параллелями, и для районок, расположенных:ш их пределами. Как пранило, секущая проекция даст" мень­шее суммарное искажение;, чем касательная проекция. В еще более сложных конических проекциях ось кону­са не совпадает с полярной осью глобуса. Такие про­екции натыкаются косыми.



Изображение географических объектов зависит от расстояния между параллелями. При их равном уда­лении друг от друга проекция получается равпопроме-жуточпой к направлении с севера па юг, по не равно угольной и не равновеликой. Примером такого тина проекций является Раипопромежучочная Коническая проекция. Для небольших областей общее искажение минимально. Па Конической Равноугольной проекции

Цилиндрические проекции

11идобио коническим проекциям цилиндрические про екции могуч также6i.ni . касательными или секущими. 11роекция Мсркатора является одной из наиболее про­стых цилиндрических проекций, и экватор обычно яв­ляется ее линией касания. Меридианы проецируются геометрически на цилиндрическую поверхность, а па­раллели проецируются математически. При этом со­здается координатная еетка с углами 90°°. Цилиндр "рассекается " вдоль любого меридиана для получения конечной цилиндрической проекции. Меридианы рас­положены через равные интервалы, в то время как интервал между параллельными линиями широты воз­растает по направлению к полюсам. Эта проекция яв­ляется равноугольной и показывает истинное направ­ление вдоль прямых линий. В проекции Меркатора прямыми линиями являются линии румбов - линии постоянного азимута, а не большинство больших ок­ружностей.

Мри создании более сложных цилиндрических проек­ций цилиндр вращают, изменяя, таким образом, ли­нии касания или сечения. Поперечные цилиндричес­кие проекции, такие как 11оперечпая проекция Мерка­тора, используют меридианы как линии касательного контакта или линии, параллельные меридианам, как линии сечения. Стандартные линии располагаются в направлении север-юг, и вдоль них масштаб является истинным. 11аклопные цилиндры вращают вокруг ли­нии большой окружности, расположенной где-нибудь между экватором и меридианами. В этих более слож­ных проекциях большинство меридианов и линий ши­роты больше не являются прямыми.

Во всех цилиндрических проекциях линия касания пни.шипи сечеппя не имени искажении, и, таким образом, являются линиями равных расстояний. Другие гго графические свойства варьируют в зависимости от кон­кретной проекции.

Проекции Mil плоскость (озиму кшьныо проокции)

Проекции ми плоскость проецируют кяртогряфичес line данные на плоскую поверхность, касающуюся гло буен. 11рогкцня на плоскость также известна также как азимутальная нлн зенитная проекция. Этот вид проекции обычно идет по касательной к глобусу к од­ной точке, но может быть и секущим. Точкой контакта может быть Северный полюс, Южный полюс, точка на:>кваторе или любая точка между ними. Эта точка определяет используемую ориентировку и является фокусом проекции. Фокус определяется центральной долготой и центральной широтой. Ориентировка про­екции может быть полярной (нормальной), эквато­риальной (поперечной) и ногой.

11олярные проекции представляют собой простейшую форму этого вида проекций. 11араллели широты отхо­дят от полюса как концентрические окружности, а меридианы представлены прямыми линиями, которые пересекаются на полюсе под своими истинными угла­ми. 11ри всех остальных ориентировках проекции на плоскость будут иметь углы координатной сетки 90"° в своем центральном фокусе. Направления из фокуса являются точными.

1>олыние окружности, проходящие через фокус, пред­ставлены прямыми линиями, таким образом, кратчай­шим расстоянием от щчттра до любой другой чочки па карте является прямая линия. Модели искажения пло­щадей и форм представляют собой кручи вокруг фо­куса. 11о:гтому азимутальные проекции лучше приспо­соблены для отображения округлых территорий, чем прямоугольных. Проекции на плоскость используют­ся чаще всего для картографирования полярных реги­онов.

\\ некоторых проекциях па плоскость даннысо поверх пост рассматриваются со с нецнфпческоп точки в про ст"раистце. Эта точка обзора определяет, как сфериче­ские данные будут спроецированы на плоскую поверх­ность. Перспектива, в которой рассматриваются все местоположения, в различных азимутальных проек­циях различная. Точкой перспективы может быть центр Земли, точка па поверхности, прямо противополож­ная фокусу, или внешняя точка но отношению к гло­бусу, как будто ее рассматривают со спутника или с другой планеты.

Л.И1 мути.ii.i11.и- проект 1.Пи частично K.imrcii<|unnip\ имел
по г поем у фокусу и, ее. in ;»то позможпо, но точке пер
енек TiiiiKi 11а рисунке iiii/id 1 прппедепо сраппепиетрех
и ми -i;< xii i i.i ч проекции с полярными аспектами, по i"
Ii."i.i.111ч11i.i!\iм положениями точки перспектппы. Ii I no
моппческои проекции данные о понерхпости рассмат­
рипаюгея от центра Лемлп, и то премя как п (/герео-
гра(||пче(чан"| проекции они рассматрипаюгея от одно­
го полюса к" противоположному полюсу. 15 Ортогра-
(||пчгскоп проекции."!емля раеематрииается с беско-
п|"..... удаленной точки, как будто бы иадалекого кос­
моса. Обратите пниманнс па то, как различия и пер­
епекшие определяют степень искажения по наирапле-
ппю к" :>кнатору.

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33). В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.


В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.




Рис. 34


Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции P N под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.


Рис. 35


Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З. (см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре. Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность -ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций. Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей. Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Из рассмотренных выше проекций в судовождении в основном применяются: равноугольная, цилиндрическая, азимутальная перспективная, гномоническая и азимутальная перспективная стереографическая.

Масштабы

Масштабом карты называется отношение бесконечно малого элемента линии в данной точке и по данному направлению на карте к соответствующему бесконечно малому элементу линии на местности.

Этот масштаб называется частным масштабом, и каждая точка карты имеет свой, присущий только ей, частный масштаб. На картах, кроме частного, различают еще главный масштаб, являющийся исходной величиной для расчетов размеров карты.

Главным называется масштаб, величина которого сохраняется лишь по определенным линиям и направлениям, в зависимости от характера построения карты. На всех остальных частях одной и той же карты величина масштаба больше или меньше главного, т. е. этим частям карты будут соответствовать свои частные масштабы.

Отношение частного масштаба карты в данной точке по данному направлению к главному называется увеличением масштаба , а разность между увеличением масштаба и единицей - относительным искажением длины. На равноугольной цилиндрической проекции масштаб изменяется при переходе с одной параллели на другую. Параллель, по которой соблюден главный масштаб, называется главной параллелью. По мере удаления от главной параллели в сторону полюса величины частных масштабов на одной и той же карте увеличиваются и, наоборот, по мере удаления от главной параллели в сторону экватора величины частных масштабов уменьшаются.

Если масштаб выражается в виде простой дроби (или отношения), делимое которой - единица, а делитель - число, указывающее, скольким единицам длины на горизонтальной проекции данного участка земной поверхности соответствует одна единица длины на карте, то такой масштаб называется численным или числовым. Например, числовой масштаб 1/100000 (1:100000) означает, что 1 см на карте соответствует 100 000 см на местности.

Для определения длины измеряемых линий пользуются линейным масштабом, показывающим, сколько единиц длины высшего наименования на местности содержится в одной единице длины низшего наименования на карте (плане).

Например, масштаб карты «5 миль в I см» или 10 км в 1 см» и т. п. Это значит, что расстояние в 5 миль (или 10 км) на местности соответствует 1 см на карте (плане).

Линейный масштаб на плане или карте помещают под рамкой в виде прямой, разделенной на несколько делений; начальную точку линейного масштаба обозначают цифрой 0, а затем против каждого или некоторых последующих его делений ставят цифры, показывающие соответствующие этим делениям расстояния на местности.

Переход от числового масштаба к линейному осуществляется простым пересчетом мер длины.

Например, чтобы перейти от числового масштаба 1/100000 к линейному, нужно 100 000 см перевести в километры или мили. 100 000 см = 1 км, или, приближенно, 0,54 мили, следовательно, данная карта составлена в масштабе 1 км в 1 см, или 0,54 мили в 1 см.

Если известен линейный масштаб, например 2 мили в 1 см, то для перехода к числовому необходимо 2 мили перевести в сантиметры и сделать запись в виде дроби с числителем единица: 2 1852 100 - = 370 400 см, следовательно, числовой масштаб данной карты 1/370400