Стивен Хокинг

Теория всего

Перевод оригинального издания:

The Theory of Everything

Печатается с разрешения Waterside Productions Inc и литературного агентства «Синопсис».

© Phoenix Books and Audio, 2006

© ООО «Издательство АСТ», 2017 (перевод на русский язык)

Введение

В этой серии лекций я постараюсь в общих чертах рассказать о наших представлениях об истории Вселенной от Большого взрыва до образования черных дыр. Первая лекция посвящена краткому обзору идей о строении Вселенной, которых придерживались в прошлом, и рассказу о том, как была построена современная картина мира. Эту часть можно назвать историей развития представлений об истории Вселенной.

Во второй лекции я опишу, как теории гравитации Ньютона и Эйнштейна привели к пониманию того, что Вселенная не может быть неизменной – она должна либо расширяться, либо сжиматься. Из этого, в свою очередь, следует вывод, что в какое-то время в интервале от 10 до 20 млрд лет назад плотность Вселенной была бесконечной. Эта точка на оси времени называется Большим взрывом. По-видимому, этот момент и был началом существования Вселенной.

В третьей лекции я расскажу о черных дырах. Они образуются, когда массивная звезда или более крупное космическое тело коллапсирует под действием собственной гравитации. Согласно общей теории относительности Эйнштейна, каждый, кто окажется достаточно глуп, чтобы угодить в черную дыру, останется там навсегда. Никто не сможет оттуда выбраться. В сингулярности истории существования любого объекта приходит конец. Однако общая теория относительности – это теория классическая, то есть в ней не учитывается квантовомеханический принцип неопределенности.

В четвертой лекции я объясню, как квантовая механика позволяет энергии ускользать из черной дыры. Черные дыры не так уж черны, «как их малюют».

В пятой лекции я расскажу о применении идей квантовой механики к решению вопросов, связанных с Большим взрывом и происхождением Вселенной. Это подведет нас к пониманию того, что пространство-время может быть конечным, но не иметь границы или края. Это напоминает поверхность Земли, но с добавлением еще двух измерений.

В шестой лекции я покажу, как на основе этого нового предположения о границе можно объяснить, почему прошлое так сильно отличается от будущего, хотя законы физики симметричны относительно времени.

Наконец, в седьмой лекции я расскажу о попытках сформулировать единую теорию, охватывающую квантовую механику, гравитацию и все остальные физические взаимодействия. Если нам это удастся, мы действительно сможем понять Вселенную и свое место в ней.

Лекция первая

Представления о Вселенной

Еще в 340 г. до н. э. Аристотель в своем трактате «О небе» сформулировал два веских довода в пользу того, что Земля имеет форму шара, а не является плоской, как тарелка. Во-первых, он понял, что лунные затмения вызваны прохождением Земли между Солнцем и Луной. Тень Земли на Луне – всегда круглая, а это возможно, только если Земля имеет сферическую форму. Если бы Земля представляла собой плоский диск, тень была бы вытянутой и имела бы форму эллипса, за исключением тех случаев, когда в момент затмения Солнце находится точно над центром диска.

Во-вторых, из опыта своих путешествий греки знали, что в южных районах Полярная звезда находится ниже над горизонтом, чем в более северных. Опираясь на разницу видимых положений Полярной звезды в Египте и Греции, Аристотель даже приводит оценку длины окружности Земли – 400 тыс. стадиев. Чему равен один стадий – точно не известно (возможно, около 180 метров). Тогда оценка Аристотеля почти в два раза превосходит значение, принятое в настоящее время.

У древних греков был еще и третий аргумент в пользу того, что Земля должна иметь форму шара: иначе почему на горизонте сначала появляются паруса приближающегося корабля и только потом становится виден его корпус? Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее. Он так считал, поскольку в силу мистических соображений был убежден, что Земля – центр Вселенной, а круговое движение – самое совершенное.

Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее.

В I веке н. э. эта идея была развита Птолемеем в целостную космологическую модель. Земля располагается в центре, ее окружают восемь сфер, несущих на себе Луну, Солнце, звезды и пять планет, известных в то время: Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты движутся по окружностям меньших радиусов, которые связаны с соответствующими сферами. Это требовалось, чтобы объяснить их достаточно сложные наблюдаемые траектории движения по небу. На внешней сфере расположены так называемые неподвижные звезды, которые сохраняют свои положения относительно друг друга, но все вместе совершают круговое движение по небу. Что находится за пределами внешней сферы – оставалось неясным, но эта часть Вселенной, несомненно, была недоступна для наблюдений.

Модель Птолемея давала возможность достаточно точно предсказывать положения небесных тел на небе. Но для этого Птолемею пришлось допустить, что иногда Луна подходит вдвое ближе к Земле, чем в другие моменты своего движения по предсказанной траектории. Это означало, что периодически Луна должна казаться вдвое больше обычного. Птолемей знал об этом недостатке, но, несмотря на это, его модель была принята большинством, хотя и не всеми. Она получила одобрение христианской церкви, как картина мира, согласующаяся со Священным писанием. Ведь эта модель обладала огромным преимуществом, поскольку оставляла за сферой неподвижных звезд достаточно места для рая и ада.


Старинный рисунок, на котором изображены разные космологические модели, объяснявшие движение планет. На центральной схеме представлена гелиоцентрическая (в центре находится Солнце) модель движения шести известных в то время планет, их спутников и других небесных тел, обращающихся вокруг Солнца. Со второго века доминирующей моделью стала геоцентрическая (в центре находится Земля) система Птолемея (вверху слева). На смену ей пришла гелиоцентрическая система Коперника, опубликованная в 1543 г. (внизу справа). В египетской модели (внизу слева) и модели Тихо Браге (вверху справа) предпринимались попытки сохранить представление о неподвижной Земле как центре Вселенной. Подробные сведения об орбитах планет приведены слева и справа.

Из «Иллюстрированного атласа» Иоганна Георга Хека, 1860 г.


Однако в 1514 г. польский священник Николай Коперник предложил гораздо более простую модель. Сначала, опасаясь обвинений в ереси, он опубликовал свою модель анонимно. Он считал, что в центре находится неподвижное Солнце, а Земля и планеты движутся вокруг него по круговым орбитам. К несчастью для Коперника, прошло почти сто лет, прежде чем его идеи были приняты всерьез. Тогда два астронома – немец Иоганн Кеплер и итальянец Галилео Галилей – публично выступили в поддержку теории Коперника несмотря на то, что орбиты, предсказанные на основе этой теории, несколько отличались от наблюдаемых. Конец господству теории Аристотеля-Птолемея был положен в 1609 г., когда Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.

В 1609 г. Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.

Наблюдая Юпитер, Галилей заметил, что планету сопровождают несколько небольших спутников (лун), которые обращаются вокруг нее. Это означало, что не все небесные тела должны обращаться вокруг Земли, как думали Аристотель и Птолемей. Конечно, по-прежнему можно было считать, что Земля неподвижна и находится в центре Вселенной, а спутники Юпитера движутся по крайне сложным траекториям вокруг Земли, так что создается видимость их обращения вокруг Юпитера. Однако теория Коперника была гораздо проще.

В это же время Кеплер развил теорию Коперника, предположив, что планеты движутся не по круговым орбитам, а по эллиптическим. Теперь предсказания теории окончательно совпали с наблюдениями. Что касается Кеплера, эллиптические орбиты были лишь искусственной гипотезой, причем весьма досадной, поскольку эллипс считался менее совершенной фигурой, чем круг. Обнаружив (почти случайно), что эллиптические орбиты хорошо соответствуют наблюдениям, он не мог согласовать это со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил.

Объяснение было найдено гораздо позднее, в 1687 г., когда Ньютон опубликовал свой труд «Математические начала натуральной философии» . Это, возможно, самый важный из когда-либо опубликованных трудов по физике. В нем Ньютон не только предложил теорию движения тел в пространстве и времени, но также разработал математический аппарат для анализа этого движения. Кроме того, он сформулировал закон всемирного тяготения. Этот закон гласит, что все тела во Вселенной притягиваются друг к другу с силой, которая тем больше, чем больше массы тел и чем ближе друг к другу они расположены. Это та же сила, которая заставляет объекты падать на землю. История с упавшим на Ньютона яблоком почти наверняка является вымышленной. Сам Ньютон упоминал лишь о том, что идея гравитации пришла ему в голову, когда он пребывал в созерцательном настроении и заметил падение яблока.

В книге, изданной в 1988 году, Хокинг рассказывает о том, над чем рано или поздно наверняка задумывался каждый из нас: как появилась Вселенная, какова природа пространства и времени, что из себя представляют чёрные дыры и как родилась теория суперструн. Автор пишет и о некоторых математических проблемах, но приводит всего лишь одну формулу - E = mc².

За 20 лет было продано более 10 миллионов экземпляров этой книги.

Спустя 17 лет после выхода «Краткой истории» и американский физик Леонард Млодинов написали продолжение. Они использовали новейшие данные, полученные астрономическими лабораториями. Авторы рассказывают, что такое чёрная материя и чёрная энергия, возможны ли путешествия во времени, каково прошлое и будущее Вселенной, и ещё глубже погружаются в теорию струн.

Это тоже история Вселенной, дополненная потрясающими иллюстрациями - снимками космического телескопа «Хаббл». Хокинг остроумно и доступно рассказывает о Большом взрыве и непрекращающихся поисках теории всего - единой теории поля, «святого Грааля современной физики». Её появление, по версии автора, будет означать триумф человеческого разума.

Книга, написанная в 2006 году, объединяет семь лекций Хокинга.

Забавная история о космических приключениях, в которые попадают мальчик Джордж и его соседи, учёный Эрик и его дочь Анна. Авторы очень интересно и доступно рассказывают о квазарах, астероидах, чёрных дырах, параллельных и галактиках.

Книга, основанная на лекции Хокинга в Калифорнийском университете, вышла в 1980 году. Но позже она была дополнена и в 2017 году переведена на русский язык. Это сборник, в который вошли 13 эссе учёного и его развёрнутое интервью.

Темы затрагиваются очень интересные. Например, как чёрные дыры могут дать жизнь молодым вселенным.

Совместно с Леонардом Млодиновым Хокинг поёт оду науке. Он утверждает, что «невозможно доказать несуществование Бога, но наука делает его необязательным». А потому Большой взрыв может быть следствием законов и ничего больше.

Книга, которая описывает суть М-теории, объединяющей фундаментальные взаимодействия, вышла в 2010 году и за несколько дней стала бестселлером.


Автобиографическую книгу Хокинг написал лишь в 2013 году. Причина проста - он считал, что популяризировать науку важнее, чем рассказывать о себе. Но чем громче звучало его имя, тем больше находилось желающих узнать о Хокинге больше. И он решился рассказать о своей болезни, семье, науке.

В этой книге учёный ответил даже на самые неудобные и личные вопросы.

Мирная жизнь маленького кавказского городка оборвалась внезапно: с гор спустилась банда головорезов. Жители оказались беззащитны перед жесточайшим беспределом: убийства, грабежи, насилие. Кто остановит боевиков? В городе всего три милиционера, но и те погрязли во взятках, воровстве и рэкете. Вызвать помощь невозможно – телефонная связь "обрублена"… И все же нашелся человек, который преградил путь головорезам и принялся планомерно истреблять банду. Единственный, кто остался человеком в этом городе заблудших душ…

Чингиз Акифович Абдуллаев
Город заблудших душ

Честь – это мужская стыдливость.

Али Эфенди

Не всегда в самых славных деяниях бывает видна добродетель или порочность человека, но часто какой-нибудь ничтожный поступок, даже слово или шутка лучше обнаруживают характер человека, чем даже битвы, в которых гибнут десятки тысяч людей.

О, плакать, плакать, плакать!
Пьяна рыданий грудь.
Загубленное счастье
Слезами не вернуть…
Такое море боли
Чья выдержит душа?
Ах, боли столь глубокой
И жгучей, и жестокой
Не видел белый свет!
Но почему же слезы из глаз сухих не льются?
Но почему же сердце в груди не разорвется?
И облегченья нет…

Ференц Кёльчеи

Пролог

Этот город построили в большом ущелье, между высокими скалами, на окраине области. В течение многих лет он был довольно крупным поселком городского типа. В конце шестидесятых сюда даже провели газ. В семидесятые поселок разросся до размеров небольшого города и получил городской статус уже в семьдесят четвертом году. Тогда это было оживленное место – здесь проходила шоссейная дорога, ведущая в южные кавказские республики. Именно тогда сюда впервые приехала болгарская делегация, чтобы запустить сразу две линии на строящемся консервном заводе. Местная электростанция, расположенная в восьми километрах отсюда, давала достаточно энергии, чтобы спроектировать и построить здесь такое большое производство. Городской отдел милиции насчитывал двадцать два сотрудника. Город постоянно рос за счет прибывающих сюда молодых специалистов и просто людей, переезжавших в эти горные места из-за прекрасного чистого воздуха, который был так полезен астматикам и людям с заболеваниями дыхательных органов.

Все начало меняться с конца восьмидесятых. В ноябре восемьдесят девятого года начались перебои с поставками сырья на консервный завод. Сюда с юга завозили помидоры и огурцы, которые потом мариновались по болгарским рецептам. В девяностом поставки почти прекратились. На консервном заводе начали сокращать работников. В городе был не только большой завод, работающий на поставках южной продукции, но и обувной комбинат, а также небольшая фабрика по переработке шерсти. Тогда город находился далеко от границы, и никто не мог подумать, что вскоре граница окажется совсем недалеко от этого места.

Консервный завод закрылся в девяносто первом, как только полностью прекратилась поставка помидоров и огурцов из южных республик. Затем закрылась фабрика, куда перестала поступать шерсть. Дольше всех продержался обувной комбинат, примерно до середины девяносто третьего года. Но в марте этого года на окраине города произошла вооруженная стычка между местными жителями и приезжими из западных областей. Погибших было человек сорок с обеих сторон, но незваные гости отступили и, уходя, подожгли комбинат. Было непонятно, зачем они это сделали, ведь там производили легкую пляжную обувь, которая никому не мешала. Комбинат горел два дня, распространяя вокруг удушливое зловоние.

А затем в городе стало очень тихо. Как будто люди, прятавшиеся по своим домам, решили взять паузу и обдумать свое положение, пытаясь понять, как они будут жить дальше. И на следующий день из города начали выезжать машины. Сначала грузовые, которые вывозили имущество местных жителей, а затем и легковые, которые везли самих жителей.

Все понимали, что "гости" с запада могут нагрянуть еще раз, а город, вдруг ставший прифронтовым, не смог бы защитить своих жителей. На восемь оставшихся милиционеров приходилось больше тридцати тысяч человек. Через несколько лет здесь осталось четверо милиционеров и только шесть тысяч человек. Все три работающих предприятия были закрыты, и город стремительно пустел.

Еще через несколько лет в полупустом городке, уже снова превратившемся в прежний поселок городского типа, оставалось не больше четырех тысяч жителей, в основном стариков и женщин с детьми. Некоторые уехали в соседний город на химический комбинат, в ста двадцати километрах отсюда. Уезжавшие туда немногочисленные мужчины, из тех, кому некуда было больше податься, обычно оставались там на пять дней и возвращались только в выходные, чтобы в понедельник в шесть часов утра отправиться обратно на двух битых, старых автобусах, которые зимой обычно ломались в пути, и тогда до комбината приходилось добираться на попутных машинах, не так часто появлявшихся в этих местах. Выручали военные, чьи машины иногда проходили по этой дороге.

В этом городе никогда не работали мобильные телефоны. Зажатый между двумя высокими горными склонами, он не мог завести собственную ретрансляционную станцию, и даже общедоступные телевизионные каналы часто демонстрировались здесь с некоторыми искажениями. Городские телефонные линии работали благодаря единственному кабелю, протянутому еще в шестидесятые годы. К началу XXI века в городе оставалось только три милиционера. Четвертый вышел на пенсию и уехал в Астрахань к своим детям. Вот так все и жили, пока не пришла большая беда.

Глава 1

Начальник городской милиции сидел в своем небольшом кабинете, глядя в окно. Это был грузный, широкоплечий мужчина с крупными чертами лица: немного выпученные глаза, большой нос, пухлые губы и прижатые к голове большие, словно расплющенные, уши. Он расстегнул верхнюю пуговицу рубашки, ослабил узел галстука.

Двухэтажное здание милиции когда-то было гордостью местных блюстителей порядка. Его специально построили к приезду болгарских друзей, еще в семьдесят четвертом, чтобы не показывать иностранцам бывшее здание городской милиции, находившееся в обычном бараке. Здание было построено с учетом того, что город будет расти и, по прогнозам, через двадцать пять лет его население должно было превысить пятьдесят тысяч человек. Но все получилось иначе. Через двадцать пять лет население города составляло чуть больше четырех тысяч человек. Здесь не было даже своего суда и прокуратуры, а городской отдел милиции давно превратился в обычное провинциальное отделение, в котором работали только три сотрудника.

Левую часть здания переоборудовали под почту, а второй этаж отдали под отдел социального обеспечения, оставив милиционерам только два небольших кабинета, коридор и большой изолятор временного содержания, находившийся в подвале; в нем могли разместиться сразу сорок человек. Разумеется, изолятор городского отдела милиции строился в расчете на перспективу. Но такого количества преступников здесь просто никогда не было, и камеры почти всегда пустовали.

Начальником городской милиции, как он обычно любил себя называть, был майор Ильдус Сангеев, который работал здесь всю свою жизнь. Ему было уже под пятьдесят, и он понимал, что его карьера закончится именно в этом кабинете. За четверть века он получил три звания, каждое из которых ему давали с опозданием на несколько лет. Может, поэтому он стал майором только в сорок лет и с тех пор уже не получал никаких званий, так как это было высшее звание, на которое мог рассчитывать начальник городской милиции в таком забытом месте.

У Сангеева было две дочери, каждая из которых уже успела выйти замуж, родить детей и уехать в другой город. Старшая дочь переехала в Махачкалу, где ее супруг работал в городском суде, а младшая уехала в Литву, куда перебрался ее муж, сумевший получить даже литовское гражданство и устроиться на работу в таможню. Сангеевы остались втроем в большом отцовском доме, в котором раньше жило не меньше десяти человек, – майор, его супруга и теща, которой было уже под восемьдесят. Как невесело шутил сам Ильдус Сангеев, он все время ждал, когда половину его большого дома отдадут под какие-нибудь административные нужды, разместив там поликлинику, или переведут туда его отделение. В его доме было гораздо больше свободного места и целых шесть комнат. Правда, там не было тюрьмы, но изолятор и так пустовал почти все время. Зато был погреб, в котором хранились соленья и вино.

Стивен Хокинг

Теория всего

Введение

В этой серии лекций я постараюсь в общих чертах рассказать о наших представлениях об истории Вселенной от Большого взрыва до образования черных дыр. Первая лекция посвящена краткому обзору идей о строении Вселенной, которых придерживались в прошлом, и рассказу о том, как была построена современная картина мира. Эту часть можно назвать историей развития представлений об истории Вселенной.

Во второй лекции я опишу, как теории гравитации Ньютона и Эйнштейна привели к пониманию того, что Вселенная не может быть неизменной - она должна либо расширяться, либо сжиматься. Из этого, в свою очередь, следует вывод, что в какое-то время в интервале от 10 до 20 млрд лет назад плотность Вселенной была бесконечной. Эта точка на оси времени называется Большим взрывом. По-видимому, этот момент и был началом существования Вселенной.

В третьей лекции я расскажу о черных дырах. Они образуются, когда массивная звезда или более крупное космическое тело коллапсирует под действием собственной гравитации. Согласно общей теории относительности Эйнштейна, каждый, кто окажется достаточно глуп, чтобы угодить в черную дыру, останется там навсегда. Никто не сможет оттуда выбраться. В сингулярности истории существования любого объекта приходит конец. Однако общая теория относительности - это теория классическая, то есть в ней не учитывается квантовомеханический принцип неопределенности.

В четвертой лекции я объясню, как квантовая механика позволяет энергии ускользать из черной дыры. Черные дыры не так уж черны, «как их малюют».

В пятой лекции я расскажу о применении идей квантовой механики к решению вопросов, связанных с Большим взрывом и происхождением Вселенной. Это подведет нас к пониманию того, что пространство-время может быть конечным, но не иметь границы или края. Это напоминает поверхность Земли, но с добавлением еще двух измерений.

В шестой лекции я покажу, как на основе этого нового предположения о границе можно объяснить, почему прошлое так сильно отличается от будущего, хотя законы физики симметричны относительно времени.

Наконец, в седьмой лекции я расскажу о попытках сформулировать единую теорию, охватывающую квантовую механику, гравитацию и все остальные физические взаимодействия. Если нам это удастся, мы действительно сможем понять Вселенную и свое место в ней.

Лекция первая

Представления о Вселенной

Еще в 340 г. до н. э. Аристотель в своем трактате «О небе» сформулировал два веских довода в пользу того, что Земля имеет форму шара, а не является плоской, как тарелка. Во-первых, он понял, что лунные затмения вызваны прохождением Земли между Солнцем и Луной. Тень Земли на Луне - всегда круглая, а это возможно, только если Земля имеет сферическую форму. Если бы Земля представляла собой плоский диск, тень была бы вытянутой и имела бы форму эллипса, за исключением тех случаев, когда в момент затмения Солнце находится точно над центром диска.

Во-вторых, из опыта своих путешествий греки знали, что в южных районах Полярная звезда находится ниже над горизонтом, чем в более северных. Опираясь на разницу видимых положений Полярной звезды в Египте и Греции, Аристотель даже приводит оценку длины окружности Земли - 400 тыс. стадиев. Чему равен один стадий - точно не известно (возможно, около 180 метров). Тогда оценка Аристотеля почти в два раза превосходит значение, принятое в настоящее время.

У древних греков был еще и третий аргумент в пользу того, что Земля должна иметь форму шара: иначе почему на горизонте сначала появляются паруса приближающегося корабля и только потом становится виден его корпус? Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее. Он так считал, поскольку в силу мистических соображений был убежден, что Земля - центр Вселенной, а круговое движение - самое совершенное.

...

Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее.

В I веке н. э. эта идея была развита Птолемеем в целостную космологическую модель. Земля располагается в центре, ее окружают восемь сфер, несущих на себе Луну, Солнце, звезды и пять планет, известных в то время: Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты движутся по окружностям меньших радиусов, которые связаны с соответствующими сферами. Это требовалось, чтобы объяснить их достаточно сложные наблюдаемые траектории движения по небу. На внешней сфере расположены так называемые неподвижные звезды, которые сохраняют свои положения относительно друг друга, но все вместе совершают круговое движение по небу. Что находится за пределами внешней сферы - оставалось неясным, но эта часть Вселенной, несомненно, была недоступна для наблюдений.

Модель Птолемея давала возможность достаточно точно предсказывать положения небесных тел на небе. Но для этого Птолемею пришлось допустить, что иногда Луна подходит вдвое ближе к Земле, чем в другие моменты своего движения по предсказанной траектории. Это означало, что периодически Луна должна казаться вдвое больше обычного. Птолемей знал об этом недостатке, но, несмотря на это, его модель была принята большинством, хотя и не всеми. Она получила одобрение христианской церкви, как картина мира, согласующаяся со Священным писанием. Ведь эта модель обладала огромным преимуществом, поскольку оставляла за сферой неподвижных звезд достаточно места для рая и ада.


Старинный рисунок, на котором изображены разные космологические модели, объяснявшие движение планет. На центральной схеме представлена гелиоцентрическая (в центре находится Солнце) модель движения шести известных в то время планет, их спутников и других небесных тел, обращающихся вокруг Солнца. Со второго века доминирующей моделью стала геоцентрическая (в центре находится Земля) система Птолемея (вверху слева). На смену ей пришла гелиоцентрическая система Коперника, опубликованная в 1543 г. (внизу справа). В египетской модели (внизу слева) и модели Тихо Браге (вверху справа) предпринимались попытки сохранить представление о неподвижной Земле как центре Вселенной. Подробные сведения об орбитах планет приведены слева и справа.

Из «Иллюстрированного атласа» Иоганна Георга Хека, 1860 г.


Однако в 1514 г. польский священник Николай Коперник предложил гораздо более простую модель. Сначала, опасаясь обвинений в ереси, он опубликовал свою модель анонимно. Он считал, что в центре находится неподвижное Солнце, а Земля и планеты движутся вокруг него по круговым орбитам. К несчастью для Коперника, прошло почти сто лет, прежде чем его идеи были приняты всерьез. Тогда два астронома - немец Иоганн Кеплер и итальянец Галилео Галилей - публично выступили в поддержку теории Коперника несмотря на то, что орбиты, предсказанные на основе этой теории, несколько отличались от наблюдаемых. Конец господству теории Аристотеля-Птолемея был положен в 1609 г., когда Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.

...

В 1609 г. Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.

Наблюдая Юпитер, Галилей заметил, что планету сопровождают несколько небольших спутников (лун), которые обращаются вокруг нее. Это означало, что не все небесные тела должны обращаться вокруг Земли, как думали Аристотель и Птолемей. Конечно, по-прежнему можно было считать, что Земля неподвижна и находится в центре Вселенной, а спутники Юпитера движутся по крайне сложным траекториям вокруг Земли, так что создается видимость их обращения вокруг Юпитера. Однако теория Коперника была гораздо проще.

В это же время Кеплер развил теорию Коперника, предположив, что планеты движутся не по круговым орбитам, а по эллиптическим. Теперь предсказания теории окончательно совпали с наблюдениями. Что касается Кеплера, эллиптические орбиты были лишь искусственной гипотезой, причем весьма досадной, поскольку эллипс считался менее совершенной фигурой, чем круг. Обнаружив (почти случайно), что эллиптические орбиты хорошо соответствуют наблюдениям, он не мог согласовать это со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил.

Объяснение было найдено гораздо позднее, в 1687 г., когда Ньютон опубликовал свой труд «Математические начала натуральной философии» . Это, возможно, самый важный из когда-либо опубликованных трудов по физике. В нем Ньютон не только предложил теорию движения тел в пространстве и времени, но также разработал математический аппарат для анализа этого движения. Кроме того, он сформулировал закон всемирного тяготения. Этот закон гласит, что все тела во Вселенной притягиваются друг к другу с силой, которая тем больше, чем больше массы тел и чем ближе друг к другу они расположены. Это та же сила, которая заставляет объекты падать на землю. История с упавшим на Ньютона яблоком почти наверняка является вымышленной. Сам Ньютон упоминал лишь о том, что идея гравитации пришла ему в голову, когда он пребывал в созерцательном настроении и заметил падение яблока.

Знаменитый физик всю жизнь старался "подружить" теорию гравитации и квантовую теорию, мечтал о полетах в космос и напоминал землянам о неизбежной космической эмиграции

Москва. 14 марта. сайт - В среду, 14 марта, стало известно, что в возрасте 76 лет один из наиболее известных физиков-теоретиков современности и популяризатор науки Стивен Хокинг, всю жизнь старавшийся примирить теорию гравитации и квантовую теорию.

Секрет популярности Хокинга - в умной эксцентричности, неспособности замыкаться в каких-либо рамках, в открытости людям, с которыми он старался вести диалог на равных, говоря простым языком о сложных вещах.

Популяризированию науки способствовал его активный образ жизни: ученый много путешествовал, не раз становился героем мультфильмов в "Симпсонах" и "Футураме", в которых озвучивал своего персонажа, снялся даже в кино в роли самого себя - в одной из серий сериала "Звездный путь: Следующее поколение" и в эпизоде комедийного сериала "Теория Большого взрыва", ученый был сторонником ядерного разоружения, боролся с изменениями климата.

Немецкий популяризатор науки Хуберт Мания в своей книге "Стивен Хокинг" так описывает британского физика: "Почти совершенное воплощение свободного духа, огромного интеллекта, человека, который мужественно преодолевает физическую немощь, отдавая все силы на расшифровку "божественного замысла".

В 20 лет у Хокинга стали проявляться признаки хронического заболевания центральной нервной системы, которое в дальнейшем привело к полному параличу. Однако тяжелое заболевание, почти на 40 лет приковавшее ученого к инвалидному креслу, не помешало ему показать миру все многообразие Вселенной. Сам ученый мечтал отправиться в космос и в последние годы жизни он неоднократно предупреждал, что человечество обречено, а Земля погибнет от удара астероида, высоких температур или перенаселенности, и что это лишь вопрос времени.

Исследовательскую деятельность Хокинг начал еще в годы учебы в Кембридже, преподавал теорию гравитации, гравитационную физику, работал в Институте астрономии, на кафедре прикладной математики и теоретической физики Кембриджа. В Калифорнийском технологическом институте, куда его пригласили в 1974 году, он занимался, в частности, вопросами общей теории относительности. В 1979 физик получил должность Лукасовского профессора Кембриджского университета и занимал ее до 2009 года.

Более 20 лет Хокинг руководил группой, занимающейся проблемами вокруг теории относительности и вопросами гравитации. В 2007 году он основал при Кембриджском университете Центр теоретической космологии.

"Излучение Хокинга"

Профессор Кембриджского университета Хокинг известен, в частности, теоретическим предсказанием излучения черных дыр, из-за которого они постепенно испаряются, теряя массу, а значит, и информацию об упавших в нее предметах. Открытие получило название "излучение Хокинга". Оно в значительной степени изменило современные космологические представления. Согласно общепринятым представлениям, внешний наблюдатель не может заглянуть внутрь черной дыры и получить какую-либо информацию об объектах, находящихся за горизонтом событий. Однако теоретически излучение Хокинга позволяет заглянуть внутрь черной дыры, то есть определить ее внутреннюю топологию.

Излучение Хокинга не является результатом движения зарядов. Оно возникает при изменении свойств вакуума в результате формирования черной дыры. Если заряды и массы рождают только электромагнитные и гравитационные волны, то в результате квантового излучения Хокинга могут появиться электроны, позитроны, протоны и другие частицы.

В излучении Хокинга черная дыра будет излучать как обычный нагретый до какой-то температуры источник. При этом температура будет обратно пропорциональна ее массе: чем больше дыра, тем она "холоднее". Когда черная дыра излучает, ее масса уменьшается, а температура растет, это следует из соответствия энергии и массы по формуле E=mc2. При этом все характеристики частиц, кроме массы и заряда, излучаются с одинаковой вероятностью.

Парадокс потери информации

Этот парадокс формулируется на стыке между квантовой теорией поля и общей теории относительности, поэтому его разрешение может помочь в формулировке теории квантовой гравитации.

Одна из актуальных проблем в современной теоретической физике - исчезновение информации в черной дыре. Физик предложил свое объяснение. По его мнению, информация не исчезает и не оказывается записана где-то внутри черной дыры - вместо этого она хранится на поверхности горизонта событий сверхмассивного объекта в форме голограммы. Горизонт событий - поверхность черной дыры, из пределов которой свет не может вылететь наружу. Если источник излучения находится прямо на горизонте, то создаваемое им поле видно не меняющимся во времени, то есть излучения нет. Согласно голографическому принципу, если известно все о динамике на горизонте, то можно восстановить и динамику внутри черной дыры.

Хокинг в своей статье описал, как каждый акт излучения отражается на горизонте событий черной дыры. По его мнению, используя голографический принцип, можно описать детали процесса формирования излучения черных дыр. Хокинг считает, что если что-то произошло внутри или снаружи черной дыры, то происходит какой-то акт на горизонте.

В сентябре 2015 года Хокинг сообщил о новой идее, которая, по его мнению, поможет разрешить 40-летний парадокс потери информации в черных дырах. Ученый сослался в своем сообщении на некоторые специальные свойства пространства. Если ими правильно воспользоваться, то можно указать, как и в каком виде информация покидает черную дыру. В работе утверждается, что у излучения Хокинга будет бесконечно много характеристик, а не только температурное распределение, зависящее от массы, заряда и момента вращения, и при помощи этих характеристик можно будет полностью охарактеризовать состояние черной дыры.

Пророк конца света

Одно из наиболее популярных произведений Хокинга – "Краткая история времени". Вышедшая в 1988 году с подзаголовком "От большого взрыва до черных дыр" книга сразу стала бестселлером. Ее тираж составил 10 млн копий, переведена на 40 языков. Позже Хокинг написал еще две книги: "Черные дыры и молодые вселенные" (1993 год) и "Мир в ореховой скорлупке" (2001 год). В 2005 году опубликована "Кратчайшая история времени" - новое издание бестселлера 1988 года.

Хокинг доступным языком попытался опровергнуть постулат о неизменности Вселенной. "В свете от далеких галактик происходит смещение в сторону красной части спектра. Это означает, что они удаляются от нас, что Вселенная расширяется", - писал он.

"Умирающая звезда, сжимаясь под действием собственной гравитации, в конце концов, превращается в сингулярность - в точку бесконечной плотности и нулевого размера. Если повернуть вспять ход времени так, чтобы сжатие превратилось в расширение, станет возможным доказать, что у Вселенной было начало. Однако доказательство, основанное на теории относительности Эйнштейна, показывало также, что невозможно понять, как произошла Вселенная: оно демонстрировало, что все теории не действуют в момент начала Вселенной", - отмечает ученый.

Он задался вопросом, что произойдет, когда Вселенная прекратит расширяться и начнет сжиматься. "Мне казалось, что когда начнется сжатие, Вселенная вернется в упорядоченное состояние. В таком случае, с началом сжатия время должно было повернуть вспять. Люди в этой стадии проживали бы жизнь задом наперед и молодели по мере сжатия Вселенной", - говорил он.

Позже он приходит к выводу, что время все же не повернет свой ход вспять при сжатии Вселенной. "В реальном времени, в котором мы живем, у Вселенной есть две возможные судьбы. Она может продолжать расширяться вечно. Или она может начать сжиматься и прекратить свое существование в момент "большого сплющивания". Это будет похоже на большой взрыв, только - наоборот", - полагает физик.

Хокинг верил в существование внеземной жизни. "Во Вселенной со 100 миллиардами галактик, каждая из которых содержит сотни миллионов звезд, маловероятно, что Земля является единственным местом, где развивается жизнь. С чисто математической точки зрения, одни лишь цифры позволяют принимать мысль о существовании инопланетной жизни как абсолютно разумную. Реальной проблемой является то, как могут выглядеть инопланетяне, понравятся ли они землянам своим видом. Ведь они могут быть микробами или одноклеточными животными, или червями, которые населяли Землю в течение миллионов лет", - считает Хокинг.

По мнению Хокинга, у Вселенной все-таки будет финал, и человечеству не останется ничего другого, как покорять космос и осваивать новые планеты, и начать следует с Луны и Марса. "Расселение в космосе полностью изменит будущее человечества. Оно определит, будет ли у нас вообще какое-то будущее, - сказал ученый на научном фестивале в 2017 году. - Ясно, что мы вступаем в новую космическую эпоху. Мы стоим на пороге новой эры. Колонизация других планет человеком - это уже не научная фантастика, это может стать научным фактом".