Догадка о существовании античастиц, антивещества, а возможно, даже антимиров появилась задолго до появления экспериментальных данных, указывающих на возможность их существования в природе.

1. Первые предположения существования антиматерии

Впервые понятие «антиматерия» было придумано английским физиком Артуром Шустером в 1898 году, почти сразу же после открытия Джозефом Томсоном электрона. Шустер очень хотел, чтобы в природе торжествовала симметрия. Электрон, как известно, - это отрицательно заряженная частица (тут, правда, следует оговориться, что решение, какой заряд называть положительным, а какой отрицательным, было результатом соглашения; ученые могли договориться и об обратном обозначении знаков зарядов, и ничего от этого не поменялось бы), и Шустер предположил существование симметричного аналога электрона, заряженного положительно и названного им антиэлектроном. Из его гипотезы сразу следовала идея существования антиатомов и антиматерии, откуда можно электрическим полем вытягивать придуманные им антиэлектроны в антиэксперименте анти-Томсона. В течение нескольких лет Шустер пытался убедить в правомерности своей догадки окружающих ученых («Почему бы не существовать отрицательно заряженному золоту, такому же желтому, как наше», - писал он в своей статье в журнале Nature ), однако никто его аргументам не внял. Утвердившийся за много веков научный прагматизм подсказывал, что верить следует только эксперименту, а все, что экспериментом не подтверждается, - ненаучная фантазия. А эксперимент тогда неумолимо утверждал, что отрицательно заряженные электроны из вещества можно вытащить, а положительно заряженные не наблюдаются.

Идея Шустера была забыта, и антиматерию переоткрыл Поль Дирак лишь спустя 30 лет. Сделал он это тоже гипотетически, но был гораздо убедительней Шустера, показав, что существование антиматерии решает множество накопившихся нерешенных к этому моменту проблем. Прежде чем перейти к идеям Дирака, нам придется вспомнить, к каким новым выводам пришла физика за эти 30 лет.

2. Создание атома Нильсом Бором

В начале XX века возникла потребность переосмыслить законы физики. Сначала натолкнулись на невозможность описать спектр абсолютно черного тела, используя лишь законы Ньютона и Максвелла, а чуть позже выяснили, что классические законы не позволяют описать атом. Согласно химикам, атом неделим, и они со своей точки зрения абсолютно правы, поскольку во всех химических реакциях атомы просто «переезжают» из одной молекулы в другую, но, наверное, можно простить кощунство физиков, пожелавших этот атом сначала разложить на составляющие, а потом собрать согласно строгим законам физики. К 1913 году разложить атом получилось неплохо: ни у кого тогда уже не возникало сомнения, что, например, простейший атом водорода состоит из положительно заряженного протона, экспериментально открытого Резерфордом чуть позже, и электрона. Казалось бы, все необходимое для сборки атома есть: помимо протона и электрона, есть электрическая сила притяжения между ними, которая должна держать их вместе. Собрать атом получилось, а сохранять его долго в стабильном состоянии - нет: электрон неумолимо падал на протон и не желал оставаться на заданной орбите. Починить эту систему удалось Нильсу Бору, отказавшемуся ради этого от классических законов механики для описания систем на расстояниях порядка размера атома. Вернее, Бору пришлось отказаться от представления об электроне как о маленьком твердом заряженном шарике и представить его как рыхлое облако, а для его описания потребовалось создать новый математический аппарат, разработанный многими выдающимися физиками начала XX столетия и получивший название «квантовая механика».

К середине 1920-х годов квантовая механика, пришедшая на смену механике классической, когда требовалось описывать что-то очень маленькое, уже прочно утвердилась. Уравнение Шредингера, в самой основе которого лежат квантовые идеи, успешно описывало очень многие эксперименты, например эксперимент со спектром водородной лампы (разогретый водород светит не просто белым светом, а небольшим количеством спектральных линий), помещенной в магнитное поле, в котором каждая линия немножко расщепляется еще на несколько линий.

3. Проблема отрицательных энергий

К моменту, когда в квантовую механику безоговорочно поверили, сформировалась и другая теория - (релятивистская механика), которая работает с очень большими скоростями. Когда скорости тел сравнимы со скоростью света, законы механики Ньютона также необходимо подправить. Ученые попытались скрестить два предельных случая: большие скорости (теория относительности) и очень маленькие расстояния (квантовая механика). Оказалось, что ничего сложного нет в том, чтобы написать уравнение, удовлетворяющее и квантовой механике, и теории относительности. Обобщение уравнения Шредингера на случай релятивистских систем было предложено независимо Клейном, Гордоном и Фоком (последний - наш соотечественник). Вот только решения этого уравнения нас не очень устраивали. Один из парадоксов с решениями - парадокс Клейна: для очень быстрых частиц, ударяющихся о высокий барьер, от которого, по идее, они должны отражаться, вероятность перескочить барьер, согласно этому уравнению, только увеличивается с его высотой - вывод, противоречащий здравому смыслу.

Еще одна несуразность релятивистского уравнения состояла в том, что среди решений уравнения возникали частицы с отрицательными энергиями. Что в этом страшного? Представьте, что с помощью квантовой механики мы обустроили наш мир. В нем, казалось, есть пол, на котором можно устойчиво стоять, и мы наводим уют: развешиваем по стенкам картинки, ставим книжки на полки. Все наши украшения точно подчиняются квантовой механике, они все обладают положительной энергией, а если мы что-то плохо повесили - упадут на пол. Вот только, пытаясь улучшить квантовую механику, сделать ее более правильной, мы обнаружили, что никакого пола в нашем мире нет. Вместо пола - зияющая пропасть (отрицательные энергии), куда все должно провалиться. Надо отдать должное выдержке физиков того времени: они не испугались, что мир развалится на глазах, а попытались эту проблему решить.

Разрешить проблему удалось Полю Дираку, который взялся описать частицу, более сложную, чем ту, что описывает уравнение Клейна - Гордона - Фока, - электрон. Электрон нельзя описать одной функцией, надо брать сразу две, причем эту пару нельзя разделить, и приходится писать систему уравнений. Казалось бы, задача только усложнилась (и с первого взгляда это усложнение не решает главной проблемы), но Дирак попытался довести решение до конца. Для электронов работает принцип Паули, который утверждает, что два электрона нельзя поместить в одно состояние: никакими усилиями второй электрон не втиснуть в уже занятое. Дирак, берясь за эту задачу, по-видимому, надеялся воспользоваться именно этим свойством: если ниже уровня пола все состояния уже заполнены электронами, то и проваливаться будет некуда. Казалось бы, задача безнадежная: надо залить электронами бездну бесконечной глубины. А Дирак лишь пожимал плечами: «А зачем нам об этом беспокоиться? Будем считать, что об этом уже позаботилась природа (а она всесильна), все уже залито, и пол наш есть». Таким образом, проблема отрицательных энергий разрешилась!

4. Антиматерия

Однако, записывая свое уравнение, Дирак натолкнулся на новую проблему: оказывается, для релятивистского описания электрона двух функций недостаточно, придется писать четыре! Что же собой представляют эти две лишние функции для электрона? Немного подумав, Дирак сообразил, что на нашем залитом полу могут образовываться пузырьки - дырки (природа, конечно, всесильна, но может позволить себе быть не совсем безупречной и допустить некоторые дефекты). Удивительным образом такой пузырек ведет себя точно так же, как электрон, по аналогии с пузырьком похожий на капельку, висящую над полом: у них одинаковая масса, оба они заряжены. Висящая капелька имеет положительную энергию и заряжена отрицательно, собственно, это и есть наш электрон. А пузырек (в подпольном мире) тоже обладает положительной энергией, но знак заряда у него обратный - это антиэлектрон (или позитрон). Для его описания и понадобились две лишние функции.

Дирак был окрылен своим открытием. Он был убежден, что античастицы реальны, хотя их никогда до этого и не наблюдали в эксперименте. Открыли античастицы несколькими годами позже, а к идее Дирака, несмотря на явный успех его теории (заметим, что античастицы разрешили и парадокс Клейна), коллеги относились скептически. Дирак же в свою теорию, видимо, верил безоговорочно. Пытаясь найти ответ на критику ненаблюдаемости позитронов, он довольно быстро сообразил, что позитроны жить вместе с нами не могут. Если бы они возникли где-то рядом с нами, то немедленно аннигилировали бы с окружающими электронами. Поэтому он вполне разумно предположил, что если уж наша Солнечная система устроена из электронов и вообще из частиц, то здесь не место античастицам, их надо искать в других галактиках, не соприкасающихся с нашей. Сейчас мы верим, что, скорее всего, антигалактик не существует: причина в том, что антиматерия немного отличается от материи.

Придуманные Дираком позитроны были вскоре открыты Карлом Андерсоном в . Они рождались из энергичных космических фотонов в паре с электронами, но перед последующей аннигиляцией успевали пролететь некоторое расстояние и оставить следы. Интересно, что позитрон мог быть открыт на 5 лет раньше выдающимся российским физиком Дмитрием Скобельциным, который позитрон увидел, только сам не смог поверить в свое открытие. Античастицы должны быть у всех частиц, за исключением истинно нейтральных, таких как фотон (для фотона античастица является им же самим), и сегодня все они открыты. Только видим мы их в специальных экспериментах. Поэтому часто антиматерию воспринимают как совершенно абстрактное, возможно, красивое, но непонятно зачем придуманное понятие. Действительно, все, что обсуждалось ранее, - только факт существования античастиц, а в окружающей нас природе их ведь почти нет, и что толку, даже если их научились получать в лабораториях? Но не торопитесь с выводами! Мы уже научились не только получать античастицы, но и использовать их для наших нужд.

5. Применение антиматерии

На нашей повседневной жизни антиматерия вроде бы не сказывается. Тем не менее сегодня мы применяем для некоторых вполне практичных задач по крайней мере самую распространенную и относительно легко получаемую античастицу - позитрон. Одно из применений позитроны нашли в медицине для . Существуют радиоактивные ядра, испускающие позитроны, которые, вылетев из ядра, мгновенно аннигилируют с электронами из соседних атомов, превращаясь в два фотона. Пациент принимает небольшое количество аналога глюкозы с радиоактивной примесью (доза очень маленькая и не наносит вреда здоровью), глюкозоподобное вещество накапливается в активно растущих клетках, каковыми и являются раковые клетки. Именно в опухоли и будет происходить частая электрон-позитронная аннигиляция, а найти точное место в организме, откуда часто вылетают фотоны, остается технической задачей, причем это делается бесконтактно: вокруг пациента проезжает сканирующий прибор, улавливающий фотоны. Этот метод, позволяющий диагностировать и точно определять местоположение опухоли, называется позитронно-эмиссионной томографией.

Позитроны используются также в материаловедении. С помощью специального позитронного микроскопа, стреляющего позитронами по изучаемому объекту, можно исследовать поверхности полупроводников для их применения в электронике. А можно просто изучать образцы каких-либо материалов, определять «усталость» материалов и находить в них микродефекты. Так что эта, казалось бы, совершенно абстрактная область знания служит вполне конкретным интересам людей.

АНТИВЕЩЕСТВО, вещество, состоящее из атомов, ядра которых имеют отрицательный электрический заряд и окружены позитронами – электронами с положительным электрическим зарядом. В обычном веществе, из которого построен окружающий нас мир, положительно заряженные ядра окружены отрицательно заряженными электронами. Обычное вещество, чтобы отличать его от антивещества, иногда называют койновеществом (от греч. койнос – обычный). Однако в русской литературе этот термин практически не употребляется. Следует подчеркнуть, что термин «антивещество» не совсем правилен, поскольку антивещество – тоже вещество, его разновидность. Антивещество обладает такими же инерционными свойствами и создает такое же гравитационное притяжение, как и обычное вещество.

Говоря о веществе и антивеществе, логично начать с элементарных (субатомных) частиц. Каждой элементарной частице соответствует античастица; обе имеют почти одинаковые характеристики, за исключением того, что у них противоположный электрический заряд. (Если частица нейтральна, то античастица также нейтральна, но они могут различаться другими характеристиками. В некоторых случаях частица и античастица тождественны друг другу.) Так, электрону – отрицательно заряженной частице – соответствует позитрон, а античастицей протона с положительным зарядом является отрицательно заряженный антипротон. Позитрон был открыт в 1932, а антипротон – в 1955; это были первые из открытых античастиц. Существование античастиц было предсказано в 1928 на основе квантовой механики английским физиком П.Дираком.

При столкновении электрона и позитрона происходит их аннигиляция, т.е. обе частицы исчезают, а из точки их столкновения испускаются два гамма-кванта. Если сталкивающиеся частицы движутся с небольшой скоростью, то энергия каждого гамма-кванта составляет 0,51 МэВ. Эта энергия есть «энергия покоя» электрона, или его масса покоя, выраженная в единицах энергии. Если же сталкивающиеся частицы движутся с большой скоростью, то энергия гамма-квантов будет больше за счет их кинетической энергии. Аннигиляция происходит и при столкновении протона с антипротоном, но процесс в этом случае протекает гораздо сложнее. В качестве промежуточных продуктов взаимодействия рождается ряд короткоживущих частиц; однако спустя несколько микросекунд как окончательные продукты превращений остаются нейтрино, гамма-кванты и небольшое число электрон-позитронных пар. Эти пары в конечном итоге могут аннигилировать, создавая дополнительные гамма-кванты. Аннигиляция происходит и при столкновении антинейтрона с нейтроном или протоном.

Коль скоро существуют античастицы, возникает вопрос, не могут ли из античастиц образовываться антиядра. Ядра атомов обычного вещества состоят из протонов и нейтронов. Самым простым ядром является ядро изотопа обычного водорода 1 H; оно представляет собой отдельный протон. Ядро дейтерия 2 H состоит из одного протона и одного нейтрона; оно называется дейтроном. Еще один пример простого ядра – ядро 3 He, состоящее из двух протонов и одного нейтрона. Антидейтрон, состоящий из антипротона и антинейтрона, был получен в лаборатории в 1966; ядро анти- 3 He, состоящее из двух антипротонов и одного антинейтрона, было впервые получено в 1970.

Согласно современной физике элементарных частиц, при наличии соответствующих технических средств можно было бы получить антиядра всех обычных ядер. Если эти антиядра окружены надлежащим числом позитронов, то они образуют антиатомы. Антиатомы обладали бы почти в точности такими же свойствами, как и обычные атомы; они образовали бы молекулы, из них могли бы формироваться твердые тела, жидкости и газы, в том числе и органические вещества. Например, два антипротона и одно ядро антикислорода вместе с восемью позитронами могли бы образовать молекулу антиводы, сходную с обычной водой H 2 O, каждая молекула которой состоит из двух протонов ядер водорода, одного ядра кислорода и восьми электронов. Современная теория элементарных частиц в состоянии предсказать, что антивода будет замерзать при 0° С, кипеть при 100° С и в остальном вести себя подобно обычной воде. Продолжая такие рассуждения, можно прийти к выводу, что построенный из антивещества антимир был бы чрезвычайно сходен с окружающим нас обычным миром. Этот вывод служит отправной точкой теорий симметричной Вселенной, основанных на предположении, что во Вселенной равное количество обычного вещества и антивещества. Мы живем в той ее части, которая состоит из обычного вещества.

Если привести в соприкосновение два одинаковых куска из веществ противоположного типа, то произойдет аннигиляция электронов с позитронами и ядер с антиядрами. При этом возникнут гамма-кванты, по появлению которых можно судить о происходящем. Поскольку Земля по определению состоит из обычного вещества, в ней нет заметных количеств антивещества, если не считать мизерного числа античастиц, рождающихся на больших ускорителях и в космических лучах. То же самое относится и ко всей Солнечной системе.

Наблюдения показывают, что в пределах нашей Галактики возникает лишь ограниченное количество гамма-излучения. Отсюда ряд исследователей делают вывод об отсутствии в ней сколько-нибудь заметных количеств антивещества. Но этот вывод не бесспорен. В настоящее время нет способа определить, например, состоит ли данная близкая звезда из вещества или антивещества; звезда из антивещества испускает точно такой же спектр, как и обычная звезда. Далее, вполне возможно, что разреженное вещество, заполняющее пространство вокруг звезды и тождественное веществу самой звезды, отделено от областей, заполненных веществом противоположного типа – очень тонкими высокотемпературными «слоями Лейденфроста». Таким образом, можно говорить о «ячеистой» структуре межзвездного и межгалактического пространства, в которой каждая ячейка содержит либо вещество, либо антивещество. Эту гипотезу подкрепляют современные исследования, показывающие, что магнитосфера и гелиосфера (межпланетное пространство) имеют ячеистую структуру. Ячейки с разной намагниченностью и иногда также с разными температурой и плотностью разделены очень тонкими токовыми оболочками. Отсюда следует парадоксальный вывод, что указанные наблюдения не противоречат существованию антивещества даже в пределах нашей Галактики.

Если раньше не было убедительных аргументов в пользу существования антивещества, то теперь успехи рентгеновской и гамма-астрономии изменили положение. Наблюдались явления, связанные с огромным и часто в высшей степени беспорядочным выделением энергии. Вероятнее всего, источником такого энерговыделения была аннигиляция.

Шведский физик О.Клейн разработал космологическую теорию, основанную на гипотезе симметрии между веществом и антивеществом, и пришел к выводу, что процессы аннигиляции играют решающую роль в процессах эволюции Вселенной и формирования структуры галактик.

Становится все более очевидным, что основная альтернативная ей теория – теория «большого взрыва» – серьезно противоречит данным наблюдений и центральное место при решении космологических проблем в ближайшем будущем, скорее всего, займет «симметричная космология».

Антиматерия – это материя, состоящая из античастиц, то есть частиц с точно такими же, но обратными по значению и свойствами тех частиц, противоположностями которых они являются. Каждая частица обладает своей зеркальной копией – античастицей. Античастицы протона, нейтрона и называются антипротоном, антинейтроном и позитроном, соответственно. Протоны и нейтроны, в свою очередь, состоят из еще более меньших частиц, называемых кварками. Антипротоны и антинейтроны состоят из антикварков.

Античастицы переносят аналогичный, но противоположный по значению заряд, как и их прототипы из обычной материи, но обладают той же массой и похожи на них во всех других отношениях. Как предполагают ученые, во могут существовать целые галактики из антиматерии. Также есть мнение, что антивещества во Вселенной может быть даже больше, чем обычного вещества. Но увидеть антиматерию невозможно, так же как объекты окружающего нас обычного мира. Она не видима для человеческого зрения.

Большинство астрономов, все же сходятся во мнении, что антивещества все-таки не так уж и много или вообще нет в природе, иначе, как они рассуждают, во Вселенной было бы много мест где обычная материя и антиматерия сталкиваются друг с другом, что сопровождалось бы мощным потоком гамма-лучей, вызванных их аннигиляцией. Аннигиляция – это взаимоуничтожение частиц материи и антиматерии, сопровождающееся выделением энергии. Однако такие регионы не были найдены.

Одна из возможных гипотез возникновения антиматерии связана с теорией большого взрыва. Эта теория утверждает, что вся наша возникла в результате и расширения некой точки в пространстве. После взрыва возникло равное количество материи и антиматерии. Сразу же начался процесс их взаимоуничтожения. Однако по какой-то причине материи оказалось немного больше, что позволило образоваться Вселенной в привычной нам форме.

Из-за отсутствия возможности изучить свойства антиматерии в , ученые прибегают к искусственным способам образования антивещества. Для его получения используют специальные научные прибору – ускорители частиц, в которых атомы материи разгоняются до около световой скорости (300 000 км/сек). Сталкиваясь, некоторые частицы разрушаются, в результате чего образуются античастицы, из которых можно получить антиматерию. Сложной проблемой является хранение антивещества, так как, соприкоснувшись с обычной материей, антивещество уничтожается. Для этого полученные крупицы антиматерии помещают в вакуум и в , которое удерживает их в подвешенном состоянии и не дает прикоснуться к стенкам хранилища.

Не смотря на всю сложность получения и исследования антивещества, оно может предоставлять для нашей жизни множество преимуществ. Все они основаны на то факте, что при взаимодействии антиматерии с материей выделяется огромное количество энергии. Причем отношение высвобождаемой энергии к массе участвующего вещества не превзойдена ни одним видом или взрывчатого вещества. В результате аннигиляции нет никаких побочных продуктов, только чистая энергия. Поэтому ученые уже сейчас мечтают об ее применении. Например, об на антиматерии с нескончаемым ресурсом. Космические корабли с анигиляторными двигателями смогут пролетать тысячи световых лет на около световой скорости. Военным это даст возможность создать огромную по мощности , гораздо более разрушительную, чем атомная или водородная . Однако всем этим мечтам не суждено осуществится, пока мы не сможем получать недорогое антивещество в промышленных масштабах.

В физике и химии антиматерия - это вещество, которое состоит из античастиц, то есть из антипротона (протон с отрицательным электрическим зарядом) и из антиэлектрона (электрон с положительным электрическим зарядом). Антипротон и антиэлектрон образуют атом антиматерии подобно тому, как электрон и протон образуют атом водорода.

Общее понятие о материи и антиматерии

Каждый знает ответ на вопрос о том, что такое материя, то есть это субстанция, которая состоит из молекул и атомов. Сами атомы, в свою очередь, состоят из электронов и ядер, образованных протонами и нейтронами. Понимание вопроса, что такое материя, дает возможность понять, что такое антиматерия. Под ней понимается субстанция, составляющие частицы которой имеют противоположный электрический заряд. В случае пары нейтрон-антинейтрон их заряды равны нулю, но магнитные моменты направлены противоположно.

Основное свойство антиматерии - это ее способность к аннигиляции при встрече с обычной материей. В результате контакта этих субстанций масса исчезает и полностью переводится в энергию. Согласно космической теории, во Вселенной существует равное количество материи и антиматерии, этот факт следует из теоретических рассуждений. Однако эти субстанции разделены между собой огромными расстояниями, поскольку любая их встреча приводит к грандиозным космическим феноменам уничтожения материи.

История открытия антиматерии

Антиматерия была открыта в 1932 году североамериканским физиком Карлом Андерсеном, который изучал космические лучи и смог обнаружить позитрон (античастица электрона). Благодаря этому открытию он получил Нобелевскую премию в 1936 году. Впоследствии были экспериментально открыты антипротоны. Это произошло в 2006 году благодаря запуску спутника "Памела", миссией которого было изучение частиц, испускаемых Солнцем.

Впоследствии человечество научилось самостоятельно создавать антиматерию. В результате многих экспериментов было показано, что столкновение материи и антиматерии уничтожает обе субстанции и порождает гамма-лучи. Эти экспериментальные выводы были предсказаны еще Альбертом Эйнштейном.

Использование антиматерии

Где может быть использована антиматерия? В первую очередь антиматерия - это отличное топливо. Всего одна капля антивещества способна дать энергию, которой будет достаточно для энергообеспечения крупного города в течение суток. Кроме того, этот источник энергии является экологически чистым.

В области медицины основное использование антиматерии - это томография позитронного излучения. Гамма-лучи, которые возникают в результате аннигиляции вещества и антивещества, используются для обнаружения раковых опухолей в организме. Также используют антивещество в терапии против раковых заболеваний. В настоящее время ведутся исследования по использованию антипротонов для полного уничтожения раковых тканей.

Сколько стоит грамм антиматерии и где ее хранить?

Производство антиматерии с помощью ускорителей элементарных частиц требует огромных энергетических затрат. Кроме того, антиматерию тяжело хранить, поскольку она при любом контакте с обычным веществом самоуничтожается. Поэтому хранят ее в сильных электромагнитных полях, которые также требуют больших энергетических затрат на их создание и поддержание.

В связи с вышесказанным можно сделать вывод, что антиматерия является самой дорогой субстанцией на земле. Ее грамм оценивается в 62,5 миллиарда долларов США. По другим оценкам, предоставленным ЦЕРН, чтобы создать одну миллиардную грамма антивещества, необходимо затратить несколько сотен миллионов швейцарских франков.

Космос - источник антиматерии

На данном этапе развития технологий искусственное создание антиматерии - это низкоэффективный и затратный способ. Ввиду этого ученые из НАСА планируют собирать магнитными полями антиматерию в поясе Ван Аллена Земли. Этот пояс находится на высоте нескольких сотен километров над поверхностью нашей планеты и имеет толщину в несколько тысяч километров. Эта область космоса содержит большое количество антипротонов, которые образуются в результате реакций элементарных частиц, вызванных столкновениями космических лучей в верхних слоях атмосферы Земли. В количество обычной материи невелико, поэтому антипротоны могут существовать в нем достаточно долгое время.

Другой источник антивещества - это аналогичные радиационные пояса вокруг планет-гигантов Солнечной системы: Юпитера, Сатурна, Нептуна и Урана. Особое внимание ученые уделяют Сатурну, который, по их мнению, должен производить большое количество антипротонов, возникающих в результате взаимодействия заряженных космических частиц с ледяными кольцами планеты.

Также ведутся работы в направлении более экономного хранения антивещества. Так, профессор Масаки Гори (Masaki Hori) заявил о разработанном методе удержания антипротонов с помощью радиочастот, что, по его словам, позволит значительно сократить размеры контейнера для антиматерии.

Антиматерия — это противоположность нормальной материи. Более конкретно, субатомные частицы антивещества обладают свойствами, противоположными свойствам вещества, характерного для обычного вещества.

Электрический заряд этих частиц меняется на противоположный. Антиматерия была создана вместе с материей после Большого взрыва, но антиматерия редко встречается в сегодняшней вселенной, и ученые не знают, почему.

Чтобы лучше понять антиматерию, нужно больше знать о материи. Материя состоит из атомов, которые являются основными единицами химических элементов, таких как водород, гелий или кислород. Каждый элемент имеет определенное количество атомов: водород имеет один атом; гелий имеет два атома; и так далее.

Вселенная атома сложна, так как она полна экзотических частиц, которые физики только начинают понимать. С простой точки зрения, атомы имеют частицы, которые известны как , протоны и внутри них.

Что вы получите, когда объедините теорию относительности и квантовую механику? Здесь нет шуток — просто революционная концепция, придуманная лауреатом Нобелевской премии П. Дирак после того, как он обнаружил странное несоответствие в уравнении.

В физике частиц каждый тип частицы имеет ассоциированную античастицу с той же массой, но с противоположными физическими зарядами (например, электрический заряд). Например, античастица электрона является антиэлектроном (который часто называют позитроном). В то время как электрон имеет отрицательный электрический заряд, позитрон имеет положительный электрический заряд и естественно генерируется в некоторых типах радиоактивного распада. Обратное также верно: античастицей позитрона является электрон.

Некоторые частицы, такие как фотон, являются их собственной античастицей. В противном случае для каждой пары частиц с античастицами одна обозначается как нормальная материя (из которой мы сделаны), а другая (обычно с приставкой «анти»), как в антиматерии.

Пары частицы-античастицы могут аннигилировать друг друга, производя фотоны; поскольку заряды частицы и античастицы противоположны, общий заряд сохраняется. Например, позитроны, образующиеся при естественном радиоактивном распаде, быстро аннигилируют себя электронами, производя пары гамма-лучей, процесс, используемый в позитронно-эмиссионной томографии.

Законы природы почти симметричны относительно частиц и античастиц. Например, антипротон и позитрон могут образовывать анти-водородный атом, который, как полагают, обладает теми же свойствами, что и атом водорода. Это приводит к вопросу о том, почему образование материи после Большого взрыва привело к созданию вселенной, состоящей почти целиком из материи.

Где это?

Частицы антивещества создаются в сверхскоростных столкновениях. В первые моменты после Большого Взрыва существовала только энергия. По мере того как вселенная охлаждалась и расширялась, частицы как материи, так и антиматерии были получены в равных количествах. Почему материя стала доминировать, это вопрос, который ученые еще не обнаружили.

Одна теория предполагает, что в начале было создано более нормальное вещество, чем антиматерия, так что даже после взаимной аннигиляции было достаточно нормальной материи, оставшейся для образования звезд, галактик и нас.

Открытие антиматерии

Антиматерия была впервые открыта в 1928 году английским физиком Полом Дираком, которого журнал New Scientist назвал «величайшим британским теоретиком, как сэр Исаак Ньютон».

Что именно было уравнением Дирака? Короче говоря, это было обширное расширение теории относительности Эйнштейна в сочетании с квантовой механикой так, как никогда ранее не делалось математически. Дирак обнаружил, что это уравнение учитывает существование частиц, как мы их знаем, а также противоположно заряженных частиц с магнитными моментами, противоположными моментам соответствующих частиц вещества. Он назвал эти противоположно заряженные частицы античастицами или антивеществами.

По словам журнала, Дирак объединил специальное уравнение относительности Эйнштейна (которое говорит, что свет — это самая быстрая движущаяся вещь во Вселенной) и квантовая механика (описывающая то, что происходит в атоме). Он обнаружил, что уравнение работает для электронов с отрицательным зарядом или с положительными зарядами.

Когда частицы антивещества взаимодействуют с частицами материи, они аннигилируют друг друга и производят энергию. Это привело к тому, что инженеры предположили, что двигатель на антиматерии космического аппарата может быть эффективным способом исследования Вселенной.

НАСА предупреждает, что существует огромная уловка с этой идеей: для создания миллиграмма антиматерии требуется около 100 миллиардов долларов.

«Чтобы быть коммерчески жизнеспособным, эта цена должна снизиться примерно в 10 000 раз», — пишет агентство. Выработка энергии создает еще одну головную боль: «Для создания антивещества требуется гораздо больше энергии, чем энергия, которую можно получить от реакции антивещества».

Но это не помешало НАСА и другим группам работать над улучшением технологии, чтобы сделать двигатель на антиматерии возможным.