Мифы и факты

26 апреля 2016 года исполняется 30 лет со дня аварии на Чернобыльской АЭС. Последствия самой крупной за всю историю мирного атома техногенной катастрофы специалисты всего мира устраняют до сих пор.

В российской атомной промышленности была проведена программа по модернизации, практически полностью пересмотрены устаревшие технологические решения и разработаны системы, которые, по словам специалистов, полностью исключают возможность подобной аварии.

О мифах, которые окружают аварию на ЧАЭС, и извлеченных из нее уроках – в спецпроекте ТАСС

ФАКТЫ

Самая крупная катастрофа в истории мирного атома

Строительство первой очереди Чернобыльской АЭС началось в 1970 году, для обслуживающего персонала рядом был возведен город Припять. 27 сентября 1977 года первый энергоблок станции с реактором РБМК-1000 мощностью в 1 тыс. МВт был подключен к энергосистеме Советского Союза. Позднее вступили в строй еще три энергоблока, ежегодная выработка энергии станции составляла 29 млрд киловатт-часов.

9 сентября 1982 года на ЧАЭС произошла первая авария – во время пробного пуска 1-го энергоблока разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, ликвидация последствий ЧП заняла около трех месяцев.

1">

1">

Планировалось остановить реактор (при этом планово была отключена система аварийного охлаждения) и замерить генераторные показатели.

Безопасно заглушить реактор не удалось. В 1 час 23 минуты мск на энергоблоке произошел взрыв и пожар.

ЧП стало крупнейшей катастрофой в истории атомной энергетики: была полностью разрушена активная зона реактора, здание энергоблока частично обрушилось, произошел значительный выброс радиоактивных материалов в окружающую среду.

Непосредственно при взрыве погиб один человек – оператор насосов Валерий Ходемчук (его тело не удалось обнаружить под завалами), утром того же дня в медсанчасти умер от полученных ожогов и травмы позвоночника инженер-наладчик системы автоматики Владимир Шашенок.

27 апреля был эвакуирован город Припять (47 тыс. 500 человек), а в последующие дни – население 10-километровой зоны вокруг ЧАЭС. Всего в течение мая 1986 года из 188 населенных пунктов в 30-километровой зоне отчуждения вокруг станции были отселены около 116 тыс. человек.

Интенсивный пожар продолжался 10 суток, за это время суммарный выброс радиоактивных материалов в окружающую среду составил около 14 эксабеккерелей (порядка 380 млн кюри).

Радиоактивному загрязнению подверглось более 200 тыс. кв. км, из них 70% – на территории Украины, Белоруссии и России.

Наиболее загрязнены были северные районы Киевской и Житомирской обл. Украинской ССР, Гомельская обл. Белорусской ССР и Брянская обл. РСФСР.

Радиоактивные осадки выпали в Ленинградской обл., Мордовии и Чувашии.

Впоследствии загрязнение было отмечено , Норвегии, Финляндии и Швеции.

Первое краткое официальное сообщение о ЧП было передано ТАСС 28 апреля. По словам бывшего генерального секретаря ЦК КПСС Михаила Горбачева, сказанным в интервью BBC в 2006 году, праздничные первомайские демонстрации в Киеве и других городах не были отменены из-за того, что руководство страны не обладало "полной картиной случившегося" и опасалось паники среди населения. Только 14 мая Михаил Горбачев выступил с телевизионным обращением, в котором рассказал об истинном масштабе происшествия.

Советская госкомиссия по расследованию причин ЧП возложила ответственность за катастрофу на руководство и оперативный персонал станции. Созданный Международным агентством по атомной энергии (МАГАТЭ) Консультативный комитет по вопросам ядерной безопасности (INSAG) в своем отчете 1986 года подтвердил выводы советской комиссии.

Тассовцы в Чернобыле

Одним из первых журналистов на место аварии в украинском Полесье, чтобы рассказать правду о небывалой в истории техногенной катастрофе, выехал тассовец Владимир Иткин. Как настоящий герой-репортер проявил он себя во время катастрофы. Его материалы были опубликованы практически во всех газетах страны.

А уже через несколько дней после взрыва мир потрясли фотографии дымящихся развалин четвертого энергоблока, который снял фотокорреспондент ТАСС Валерий Зуфаров и его украинский коллега Владимир Репик. Тогда, в первые дни, облетая на вертолете электростанцию вместе с учеными и специалистами, фиксируя все детали атомного выброса, они не задумывались о последствиях для своего здоровья. Вертолет, с которого снимали корреспонденты, зависал всего в 25 метрах над ядовитой бездной.

1">

1">

{{$index + 1}}/{{countSlides}}

{{currentSlide + 1}}/{{countSlides}}

Валерий уже знал, что "схватил" огромную дозу, но продолжал выполнять свой профессиональный долг, создав для потомков фотолетопись этой трагедии.

Репортеры работали у жерла реактора, при строительстве саркофага.

За эти снимки Валерий заплатил преждевременной кончиной в 1996 году. У Зуфарова немало наград - в том числе "Золотой глаз", присуждаемый World Press Photo.

В числе журналистов-тассовцев, имеющих статус ликвидатора последствий аварии на ЧАЭС, корреспондент в Кишиневе Валерий Демидецкий. Осенью 1986 года он был направлен в Чернобыль как человек, уже имевший дело с атомом - Валерий служил на атомной подводной лодке и знал, что такое радиационная опасность.

"Больше всего, - вспоминает он, - там поражали люди. Настоящие герои. Они хорошо понимали, на что идут, работая день и ночь. Поразила Припять. Красавец-город, где жили работники АЭС, напоминал зону "Сталкера" Тарковского. Второпях оставленные дома, разбросанные детские игрушки, тысячи брошенных жителями автомашин".

– по сообщениям ТАСС

Походы в ад

Одними из первых, кто принял участие в ликвидации аварии, были работники пожарной охраны. Сигнал о пожаре на АЭС был принят 26 апреля 1986 года в 1 ч. 28 мин. Уже к утру в зоне аварии находилось 240 человек личного состава Киевского областного управления пожарной охраны, силами которых к 6 ч. 35 мин. пожар на 4-м блоке ЧАЭС был полностью ликвидирован.

Правительственная комиссия обратилась к войскам химической защиты с целью проведения оценки радиационной обстановки и к военным вертолетчикам для оказания помощи в тушении пожара активной зоны. На аварийной площадке к этому времени работало несколько тысяч человек.

В зоне аварии работали представители службы радиационного контроля, сил Гражданской обороны, Химвойск Минобороны, Госгидромета и Минздрава.

Помимо ликвидации аварии, в их задачу входило измерение радиационной ситуации на АЭС и исследование радиоактивного загрязнения природных сред, эвакуация населения, охрана зоны отчуждения, которая была установлена после катастрофы.

Врачи осуществляли контроль за облученными и проводили необходимые лечебно-профилактические мероприятия.

В частности, на разных этапах ликвидации последствий аварии были задействованы:

От 16 до 30 тыс. человек из разных ведомств для дезактивационных работ;

Более 210 воинских частей и подразделений общей численностью 340 тыс. военнослужащих, из них более 90 тыс. военнослужащих в самый острый период с апреля по декабрь 1986 года;

18,5 тыс. работников органов внутренних дел;

Свыше 7 тыс. радиологических лабораторий и санэпидстанций;

Всего около 600 тыс. ликвидаторов со всего бывшего СССР принимали участие в тушении пожаров и расчистке.

Сразу после аварии работа станции была остановлена. Шахту взорвавшегося реактора с горящим графитом засыпали с вертолетов смесью карбида бора, свинца и доломита, а после завершения активной стадии аварии – латексом, каучуком и другими пылепоглощающими растворами (всего к концу июня было сброшено около 11 тыс. 400 т сухих и жидких материалов).

После первого, наиболее острого, этапа все усилия по локализации аварии были сосредоточены на создании специального защитного сооружения, называемого саркофагом (объект "Укрытие").

В конце мая 1986 года была сформирована специальная организация, состоящая из нескольких строительных и монтажных подразделений, бетонных заводов, управлений механизации, автотранспорта, энергоснабжения и др. Работы велись круглосуточно, вахтами, численность которых достигала 10 тыс. человек.

В период с июля по ноябрь 1986 года был сооружен бетонный саркофаг высотой более 50 м и внешними размерами 200 на 200 м, накрывший 4-й энергоблок ЧАЭС, после чего выбросы радиоактивных элементов прекратились. В ходе строительства произошел несчастный случай: 2 октября вертолет Ми-8 зацепился лопастями за трос подъемного крана и упал на территории станции, погибли четыре члена экипажа.

Внутри "Укрытия" находится не менее 95% облученного ядерного топлива из разрушенного реактора, в т. ч. около 180 т урана-235, а также порядка 70 тыс. т радиоактивного металла, бетона, стеклообразной массы, несколько десятков тонн радиоактивной пыли с общей активностью более 2 млн кюри.

"Укрытие" под угрозой

На сегодняшний день крупнейшие мировые международные структуры – от энергоконцернов до финансовых корпораций – продолжают оказывать Украине помощь в решении проблем окончательной очистки Чернобыльской зоны.

Основной недостаток саркофага – его негерметичность (общая площадь щелей достигает 1 тыс. кв. м).

Гарантированный срок эксплуатации старого "Укрытия" был рассчитан до 2006 года, поэтому в 1997 году страны "семерки" сошлись во мнении о необходимости строительства "Укрытия-2", которое накрыло бы устаревшую конструкцию.

В настоящее время возводится крупное защитное сооружение "Новый безопасный конфайнмент" – арка, которая будет надвинута поверх "Укрытия".

1">

1">

{{$index + 1}}/{{countSlides}}

{{currentSlide + 1}}/{{countSlides}}

Работы по сооружению второго саркофага должны были завершиться в 2015 году, но не раз переносились. Главной причиной задержки называется "серьезная нехватка денежных средств". Очередной срок сдачи намечен на ноябрь 2017 года.

Совокупная стоимость завершения проекта, составной частью которого является сооружение саркофага, составляет 2,15 млрд евро. При этом стоимость строительства самого саркофага составляет 1,5 млрд евро.

675 млн евро к настоящему моменту предоставил ЕБРР. При необходимости банк готов профинансировать дефицит бюджета по этому проекту.

До 10 млн евро (по 5 млн евро ежегодно) – дополнительный взнос в чернобыльский фонд – постановило внести в 2016-2017 годах правительство России.

180 млн евро обещают выделить другие международные доноры.

$40 млн намерены предоставить США.

О своем желании сделать пожертвования в Чернобыльский фонд недавно заявили также некоторые арабские страны и КНР.

Мифы об аварии

Существует огромный разрыв между научным знанием о последствиях аварии и общественным мнением. Последнее в подавляющем большинстве случаев находится под влиянием развитой чернобыльской мифологии, имеющей малое отношение к реальным последствиям катастрофы, отмечают в Институте проблем безопасного развития атомной энергетики Российской академии наук (ИБРАЭ РАН).

Неадекватное восприятие радиационной опасности, по мнению специалистов, имеет объективные конкретно-исторические причины, в числе которых:

Умалчивание государством причин и реальных последствий аварии;

Незнание населением элементарных основ физики процессов, происходящих как в области ядерной энергетики, так и в области радиации и радиоактивного воздействия;

Спровоцированная упомянутыми причинами истерия в СМИ;

Многочисленные проблемы социального характера общефедерального масштаба, ставшие хорошей почвой для быстрого образования мифов, и пр.

Косвенный ущерб от аварии, связанный с социально-психологическими и социально-экономическими последствиями, значительно выше прямого ущерба от действия чернобыльской радиации.

Миф 1.

Авария оказала катастрофическое влияние на здоровье от десятков тысяч до сотен тысяч людей

По данным Российского национального радиационно-эпидемиологического регистра (НРЭР), лучевая болезнь была выявлена у 134 человек, находившихся на аварийном блоке в первые сутки. Из них 28 погибли в течение нескольких месяцев после аварии (27 в России), 20 умерли по разным причинам в течение 20 лет.

За прошедшие 30 лет в НРЭР зафиксированы 122 случая заболевания лейкемией среди ликвидаторов. 37 из них могли быть индуцированы чернобыльской радиацией. Увеличения количества заболеваний другими видами онкологии среди ликвидаторов по сравнению с остальными группами населения зафиксировано не было.

В период с 1986 по 2011 годы из 195 тыс. российских ликвидаторов, зарегистрированных в НРЭР, от разных причин умерли около 40 тыс. человек, при этом общие показатели смертности не превышали соответствующих средних значений населения РФ.

По данным НРЭР на конец 2015 года, из 993 случаев заболеваний раком щитовидной железы у детей и подростков (на момент аварии) 99 могли быть связаны с радиационным облучением.

Никаких других последствий для населения не было зафиксировано, что полностью опровергает все сложившиеся мифы и стереотипы о масштабах радиологических последствий аварии для здоровья населения, считают эксперты. Эти же выводы подтвердились и спустя 30 лет после катастрофы.

Кюри, беккерель, зиверт – в чем отличие

Радиоактивность – это способность некоторых природных элементов и искусственных радиоактивных изотопов самопроизвольно распадаться, испуская при этом невидимые и неощущаемые человеком излучения.

Для измерения количества радиоактивного вещества или его активности применяются две единицы: внесистемная единица кюри и единица беккерель , принятая в Международной системе единиц (СИ).

На окружающую среду и живые организмы влияет ионизирующее воздействие излучения, которое характеризуется дозой излучения или облучения.

Чем больше доза облучения, тем больше степень ионизации. Одна и та же доза может накапливаться за разное время, и биологический эффект облучения зависит не только от величины дозы, но и от времени ее накопления. Чем быстрее получена доза, тем больше ее поражающее действие.

Разные виды излучений создают разный поражающий эффект при одной и той же дозе излучения. Все национальные и международные нормы установлены в эквивалентной дозе облучения. Внесистемной единицей этой дозы является бэр , а в системе СИ – зиверт (Зв).

Первый заместитель директора Института проблем безопасного развития атомной энергетики РАН Рафаэль Арутюнян уточняет, что если проанализировать дополнительные дозы, накопленные жителями чернобыльских зон за прошедшие после аварии годы, то из 2,8 млн россиян, оказавшихся в районе воздействия:

2,6 млн получили меньше 10 миллизивертов. Это в пять-семь раз меньше среднемировой дозы облучения от природного радиационного фона;

Менее 2 тыс. человек получили дополнительные дозы больше 120 миллизивертов. Это в полтора-два раза меньше доз облучения жителей таких стран, как Финляндия.

Именно по этой причине, считает ученый, среди населения не наблюдается и не может наблюдаться каких-либо радиологических последствий, кроме уже отмеченного выше рака щитовидной железы.

По данным специалистов из Научного центра радиационной медицины АМН Украины, из 2,34 млн человек, проживающих на загрязненных территориях Украины, за 12 лет после катастрофы от раков разного происхождения умерло примерно 94 800 человек, из-за "чернобыльских" раков дополнительно умерло около 750 человек.

Для сравнения: среди 2,8 млн людей, независимо от места их проживания, ежегодно от раковых заболеваний, не связанных с радиационным фактором, смертность составляет от 4 до 6 тыс., то есть за 30 лет – от 90 до 170 тыс. смертей.

Какие дозы облучения смертельны

Существующий повсеместно естественный радиационный фон, а также некоторые медицинские процедуры приводят к тому, что каждый человек ежегодно получает в среднем эквивалентную дозу облучения от 2 до 5 миллизивертов.

Для людей, профессионально связанных с радиоактивными материалами, годовая эквивалентная доза не должна превышать 20 миллизивертов.

Летальной считается доза в 8 зивертов, а доза половинной выживаемости, при которой погибает половина облученной группы людей, составляет 4-5 зивертов.

На Чернобыльской АЭС около тысячи людей, находившихся рядом с реактором в момент катастрофы, получили дозы от 2 до 20 зивертов, что в ряде случаев оказалось смертельным.

У ликвидаторов средняя доза составила около 120 миллизивертов.

© YouTube.com/TASS

Миф 2 .

Генетические последствия аварии на ЧАЭС для человечества ужасны

По словам Арутюняна, мировая наука за 60 лет подробных научных исследований не наблюдала на человеке каких-либо генетических дефектов у потомков вследствие радиационного облучения их родителей.

Данный вывод подтверждается и результатами постоянного наблюдения как за пострадавшими в Хиросиме и Нагасаки, так и за последующим поколением.

Превышения генетических отклонений относительно среднестатистических данных по стране зафиксировано не было.

Через 20 лет после Чернобыля Международная комиссия радиологической защиты в своих рекомендациях 2007 года понизила значение гипотетических рисков практически в 10 раз.

В то же время есть и другие мнения. Согласно исследованиям доктора сельскохозяйственных наук Валерия Глазко:

После катастрофы рождаются не все, кто должен был родиться.

Преимущественно воспроизводятся менее специализированные, но обладающие более высокой устойчивостью к действию неблагоприятных факторов среды формы.

Ответ на одни и те же дозы ионизирующего облучения зависит от его новизны для популяции.

Ученый считает, что реальные последствия чернобыльской аварии для популяций человека будут доступны для анализа к 2026 году, так как поколение, попавшее под прямое воздействие аварии, только сейчас начинает обзаводиться семьями и рожать детей.

Миф 3.

Природа пострадала от аварии на атомной станции еще сильнее, чем человек

В Чернобыле произошел беспрецедентно большой выброс радионуклидов в атмосферу, на этом основании аварию на ЧАЭС считают самой тяжелой техногенной аварией в человеческой истории. На сегодняшний день почти повсеместно, за исключением наиболее загрязненных территорий, мощность дозы возвратилась к фоновому уровню.

Последствия облучения для флоры и фауны были заметны только непосредственно рядом с Чернобыльской АЭС в пределах зоны отчуждения.

Парадигма радиоэкологии такова, что если защищен человек, то окружающая среда защищена с огромным запасом, отмечает профессор Арутюнян. Если влияние на здоровье человека радиационного происшествия минимально, то его влияние на природу будет еще меньшим. Порог проявления негативных воздействий на флору и фауну в 100 раз выше, чем для человека.

Воздействие на природу после аварии наблюдалось только рядом с разрушенным энергоблоком, где доза облучения деревьев за 2 недели достигала 2000 рентген (в так называемом "рыжем лесу"). На данный момент вся природная среда даже в этом месте полностью восстановилась и даже расцвела за счет резкого уменьшения антропогенного воздействия.

Миф 4.

Переселение людей из города Припять и прилегающих территорий было плохо организовано

Эвакуация жителей 50-тысячного города была проведена быстро, утверждает Арутюнян. Несмотря на то, что по действующим тогда нормативам эвакуация была обязательной только в случае достижения дозы 750 мЗв, решение о ней было принято при прогнозируемом уровне доз меньше 250 мЗв. Что вполне соответствует сегодняшнему пониманию критериев экстренной эвакуации. Информация о том, что люди получали большие дозы радиационного облучения в ходе эвакуации, – неправда, уверен ученый.

Первая в мире крупнейшая авария на АЭС произошла на в 1979 году. Психологический эффект, произведённый ею на население в окрестности АЭС и, как результат, на весь Запад, был просто огромен. Большой урон был нанесен самой атомной электростанции. Однако не было жертв, облучение оказалось незначительным, так как радиоактивность (практически вся) была эффективно ограничена бетонным контейнментом станции.

ЧЕРНОБЫЛЬ. СССР (УКРАИНА)

ФУКУСИМА. ЯПОНИЯ

Устранение аварии на АЭС Фукусима. Япония

11 марта 2011 года в результате землетрясения, и случившегося после этого цунами, в Японии из строя вышли системы охлаждения на двух крупнейших АЭС мира – « » и « ». Наибольший ущерб был нанесен станции «Фукусима-1», на всех четырёх реакторах которой произошла серия взрывов и последующие пожары. Авария привела к крупной утечке радиации, в первую очередь в Тихий океан. Уровень опасности на «Фукусиме-1» был оценен в конечном итоге так же, как и авария на Чернобыльской АЭС, в семь баллов из семи по международной шкале ядерных аварий. Население, проживающее в радиусе двадцати километров от станций «Фукусима-1» и «Фукусима-2», было эвакуировано. Восстановительные работы продолжались несколько месяцев и, в принципе, не закончились и на момент 2016 года. В августе 2011 года были начаты работы по строительству защитного купола над наиболее повреждённым реактором станции. 16 декабря 2011 правительство Японии объявило о холодной остановке аварийных реакторов, однако ситуация на АЭС по-прежнему остаётся критической.

Характеристики аварий на АЭС

Радиационная авария - потеря управления источником ионизирующих излучений, вызванная неисправностью, повреждением оборудования, неправильным действием сотрудников (персонала), природными явлениями или иными причинами, которые могли привести или привели к облучению людей или радиоактивному загрязнению окружающей среды сверх установленных норм.

К основным источникам загрязнения окружающей среды радиоактивными веществами относятся производственные предприятия, добывающие и перерабатывающие сырье, содержащее радиоактивные вещества, ядерные объекты (ЯО), радиохимические заводы, научно-исследовательские институты и другие объекты.

Наиболее опасными источниками ионизирующих излучений и радиоактивного заражения окружающей среды являются аварии на ядерных объектах. Под радиационными авариями на ядерных объектах понимают нарушение их безопасной эксплуатации, при котором произошёл выход радиоактивных продуктов и (или) ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации границы в количествах, превышающих установленные значения. Радиационные аварии характеризуются исходным событием, характером протекания и радиационными последствиями .

В 1988 году Международным агентством по атомной энергетике (МАГАТЭ) была разработана Международная шкала ядерных событий (англ. INES, сокр. International Nuclear Event Scale). Уже с 1990 года эта шкала использовалась в целях единообразия оценки чрезвычайных случаев, связанных с гражданской атомной промышленностью.

Шкала применима к любому событию, связанному с перевозкой, хранением и использованием радиоактивных материалов и источников излучения и охватывает широкий спектр практической деятельности, включая радиографию, использование источников излучения в больницах, на любых гражданских ядерных установках и т.д. Она также включает утрату и хищения источников излучения и обнаружение бесхозных источников.

По шкале INES ядерные и радиологические аварии и инциденты классифицируются 8 уровнями (приложение 1):

Уровень 7. Крупная авария

Уровень 6. Серьёзная авария

Уровень 5. Авария с широкими последствиями

Уровень 4. Авария с локальными последствиями

Уровень 3. Серьёзный инцидент

Уровень 2. Инцидент

Уровень 1. Аномальная ситуация

Уровень 0. Событие ниже шкалы .

Хронология аварий и катастроф на АЭС

Полная хронология событий описывается в сообщении экологического блога от 17 апреля 2011 г. Первая в мире серьёзная авария произошла 12 декабря 1952 года в Канаде, штат Онтарио, Чолк-Ривер на атомной электростанции «NRX». Техническая ошибка персонала привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязнённой воды было сброшено прямо на землю, в мелкие траншеи неподалёку от реки Оттавы.

Спустя почти 14 лет, 5 октября 1966 года в США на АЭС «Энрико Ферми» произошла авария в системе охлаждения экспериментального ядерного реактора, которая вызвала частичное расплавление активной зоны. Персонал успел вручную остановить его. Потребовалось полтора года, чтобы вновь запустить реактор на полную мощность.

Уже через три года во Франции 17 октября 1969 года на АЭС «Сант-Лаурен» при перегрузке топлива на работающем реакторе оператор ошибочно загрузил в топливный канал не тепловыделяющую сборку, а устройство для регулирования расхода газов. В результате расплавления пяти тепловыделяющих элементов около 50 килограммов расплавленного топлива попало внутрь корпуса реактора. Произошёл выброс радиоактивных продуктов в окружающую среду. Реактор был остановлен на один год.

20 марта 1975 года в США на АЭС «Брауне Ферри» начался пожар, продолжавшийся 7 часов и причинивший прямой материальный ущерб в 10 млн. долларов. Два реакторных блока были выведены из строя более чем на год, что принесло дополнительные убытки ещё в 10 млн. долларов. Причиной возникновения пожара стало несоблюдение мер безопасности при работах по герметизации кабельных вводов, проходивших через стену реакторного зала. Проверку этой работы осуществляли самым примитивным способом; по отклонению пламени горящей стеариновой свечи. В результате произошло воспламенение материалов изоляции кабельных отверстий, а затем огонь проник в помещение реакторного зала. Потребовались большие усилия, чтобы вывести реактор на безаварийный режим и ликвидировать пожар.

5 января 1976 года на АЭС «Богунице» в Чехословакии случилась авария, связанная с перегрузкой топлива. При обширной утечке «горячего» радиоактивного газа погибли два работника станции. Аварийный выход, через который они могли бы покинуть место ЧС, был заблокирован (чтобы «предотвратить частые случаи воровства»). Население относительно аварийного выброса радиоактивности предупреждено не было.

Крупнейшая авария в истории ядерной энергетики США случилась 28 марта 1979 года на АЭС «Три-Майл Айленд». В результате серии сбоев в работе оборудования и ошибок операторов на втором энергоблоке АЭС произошло расплавление 53 процентов активной зоны реактора. Случившееся напоминало «эффект домино». Сначала испортился водяной насос. Затем из-за прекратившейся подачи охлаждающей воды урановое топливо расплавилось и вышло за пределы оболочек тепловыделяющих сборок. Образовавшаяся радиоактивная масса разрушила большую часть активной зоны и едва не прожгла корпус реактора. Если бы это случилось, последствия были бы катастрофичны. Однако персоналу станции удалось восстановить подачу воды и снизить температуру. Во время аварии около 70 процентов радиоактивных продуктов деления, накопленных в активной зоне, перешло в теплоноситель первого контура. Мощность экспозиционной дозы внутри корпуса, в который были заключены реактор и система первого контура, достигла 80 Р/ч. Произошёл выброс в атмосферу инертного радиоактивного газа - ксенона, а также йода. Кроме того, в реку Саскугана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, эвакуировали 200 тыс. человек. В наибольшей степени пострадали жители округа Дофин, проживавшие вблизи АЭС. Серьёзные негативные последствия имела задержка на два дня решения об эвакуации детей и беременных женщин из 10-километровой зоны вокруг АЭС. Работы по очистке второго энергоблока, почти полностью разрушенного в результате аварии, заняли целых 12 лет и обошлись в 1 млрд. долларов, что фактически обанкротило компанию - владельца.

8 марта 1981 года в Японии на АЭС «Цугура» произошла утечка около 4 тыс. галлонов высокорадиоактивной воды сквозь трещину в дне здания, где хранились отработавшие тепловыделяющие сборки. 56 работников были подвергнуты при этом радиоактивному облучению. Всего за период с 10 января по 8 марта 1981 года произошли четыре подобные утечки. При аварийно-восстановительных работах повышенное облучение получили 278 работников АЭС.

9 декабря 1986 года в результате прорыва трубопровода второго контура на АЭС «Сарри» в США произошёл выброс 120 кубических метров перегретых радиоактивных воды и пара. Восемь работников АЭС попали под кипящий поток. Четверо из них скончались от полученных ожогов. Причина аварии - коррозионный износ трубопровода, который привёл к уменьшению толщины стенок трубы (с 12 до 1,6 мм).

Крупнейшая авария в истории атомной энергетики Испании (событие третьего уровня по шкале INES) произошла на АЭС «Ванделлос» 19 октября 1989 года. Пожар на первом энергоблоке АЭС. Из-за внезапной остановки одной из турбин произошли перегрев и разложение смазочного масла. Образовавшийся при этом водород взорвался, что и стало причиной возгорания турбины. Поскольку на станции не работала система автоматического пожаротушения, были вызваны пожарные подразделения соседних городов, находившихся в том числе на расстоянии до 100 километров от атомной электростанции. Борьба с огнём продолжалась более 4 часов. За это время серьёзно пострадали системы энергоснабжения турбин и охлаждения реактора. Работавшие на станции пожарные рисковали жизнью. Они не знали расположения и функций её объектов, не были знакомы с планом аварийных действий на АЭС. Применяли для тушения электрических систем воду вместо пены, что могло привести к поражению их электрическим током. Кроме того, людей не предупредили о риске работы в зонах с повышенным уровнем радиации. Так через три года после Чернобыля пожарные, уже в другой стране, стали заложниками опасной ситуации на атомной станции. К счастью, на этот раз никто из них сильно не пострадал.

В Японии 9 февраля 1991 года авария на АЭС «Михама» в 320 километрах к северо-западу от Токио. Из-за разрыва трубы произошла утечка 55 тонн радиоактивной воды из системы охлаждения реактора второго энергоблока. Радиоактивного загрязнения персонала и местности не было отмечено, но инцидент считался в то время самой серьёзной аварией на японских АЭС.

Авария третьего уровня по шкале INES была зафиксирована на Хмельницкой АЭС в Украине 25 июля 1996 года. Произошёл выброс радиоактивных продуктов в помещения станции. Один человек погиб.

Во время плановых ремонтных работ 10 апреля 2003 года на втором энергоблоке АЭС «Paks» (Венгрия) произошёл выброс в атмосферу инертных радиоактивных газов и радиоактивного йода. Причина - повреждение топливных сборок при проведении химической очистки их поверхности в специальном контейнере. Авария третьего уровня по шкале INES.

4 июля 2003 года на заводе по переработке радиоактивных отходов ядерного комплекса «Фуген» в 350 километрах к западу от города Токио произошёл взрыв, повлёкший за собой пожар. Экспериментальный ядерный реактор мощностью 165 МВт, заглушённый в марте 2003 года, этим происшествием не был затронут.

Авария на АЭС «Михама» 9 августа 2004 года. Из лопнувшей трубы второго контура системы охлаждения третьего энергоблока вырвалась струя пара с температурой 270° и обварила рабочих, которые находились в турбинном зале. Четыре человека погибли, 18 - серьёзно пострадали.

25 августа 2004 года произошла крупная утечка радиоактивной воды из системы охлаждения реактора второго энергоблока АЭС «Ванделлос» (Испания). По заявлению Испанского совета по радиационной безопасности, это наиболее серьёзная авария на этой АЭС со времени пожара в 1989 году.

11 марта 2011 года в Японии произошло самое мощное за всю историю страны землетрясение. В результате на АЭС «Онагава» была разрушена турбина, возник пожар, который удалось быстро ликвидировать. На АЭС «Фукусима-1» ситуация сложилась очень серьёзная - в результате отключения системы охлаждения расплавилось ядерное топливо в реакторе блока №1, снаружи блока была зафиксирована утечка радиации, в 10-километровой зоне вокруг АЭС проведена эвакуация. На следующий день, 12 марта СМИ сообщили о взрыве на АЭС.

19 марта 2012 года Канадские власти сообщили об утечке радиоактивной воды в озеро Онтарио с АЭС, принадлежащей компании Ontario Power. Как пишет MIGnews, АЭС расположена в городе Пикеринг, в 35 км от Торонто. В заявлении компании сообщается, что в озеро попали 73 тыс. литров радиоактивной воды. Этот факт подтвердили и представители канадской Комиссии по Ядерной Безопасности.

На французской атомной электростанции «Фламанвиль», расположенной в северо-западном департаменте Манш, 26 октября 2012 года произошла утечка радиации, в результате чего первый реактор был переведён в состояние холодной остановки. За последний год это уже не первый случай аварий на французских АЭС, что заставляет противников этого вида энергии всё активнее требовать отказа от атомной энергетики .

1. Аварии на АЭС. Медико-тактическая характеристика зон радиоактивного заражения

авария атомный электростанция радиоактивный

1.1 МТХ зон радиоактивного заражения

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационно-опасными объектами (РОО). Выброс радиоактивных веществ за пределы ядерно-энергетического реактора, в результате чего может создаться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

К радиационно-опасным объектам, при авариях на которых может быть загрязнение окружающей среды, относятся: атомные электростанции, атомные тепловые электростанции, суда с атомными реакторами, исследовательские реакторы, лаборатории и клиники, использующие в своей работе радиоактивные вещества.

При прогнозе радиационной обстановки учитывается масштаб аварии, тип реактора, характер его разрушения и характер выхода радиоактивных веществ из активной зоны, а также метеоусловия в момент выброса РВ.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют:

  • · локальные аварии (радиационные последствия ограничиваются зданием, сооружением с возможным облучением персонала);
  • · местные аварии (радиационные последствия ограничиваются территорией АЭС);
  • · общие аварии (радиационные последствия распространяются за границу территории АЭС).

В первые часы и сутки после аварии действие на людей загрязнения окружающей среды определяется внешним облучением от радиоактивного облака (продукты деления ядерного топлива, смешанные с воздухом), радиоактивных выпадений на местности (продукты деления, выпадающие из радиоактивного облака), внутренним облучением вследствие вдыхания радиоактивных веществ из облака, а также за счет загрязнения поверхности тела человека этими веществами. В дальнейшем, в течение многих лет, накопление дозы облучения будет происходить за счет употребления загрязненных продуктов питания и воды.

Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения с поверхности тела человека).

Размер зон загрязнения местности находится в зависимости от категории устойчивости атмосферы и выхода активности -- выброса РВ из активной зоны реактора в зависимости от масштаба аварии.

По категории устойчивости атмосфера подразделяется на сильно неустойчивую конверсию (А), нейтральную изотермию (Д), очень устойчивую инверсию (Г). В дневное время преобладает неустойчивая, к вечеру нейтральная устойчивость атмосферы. В ночное время и ранние утренние часы преобладает инверсия очень устойчивая состояния атмосферы.

При одноразовом выбросе РВ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоактивного облака имеет вид эллипса.

Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения PВ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности.

На средней фазе источником внешнего облучения являются РВ, выпавшие из облака и находящиеся на почве, зданиях и т. п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой. Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии.

Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений деятельности населения на загрязненной территории.

В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе.

В целях исключения массовых радиационных потерь и переоблучения населения, рабочих и служащих сверх установленных доз, их действия в условиях радиоактивного заражения строго регламентируются и подчиняются режиму радиационной защиты.

Режимы радиационной защиты -- это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Соблюдение режимов радиационной защиты исключает радиационные поражения и облучение людей сверх установленных доз облучения:

  • · на военное время;
  • · однократное облучение в течение первых 4-х суток 50 рад;
  • · многократное облучение в течение 30 суток 100 рад»
  • · многократное облучение в течение 3 месяцев 200 рад;
  • · многократное облучение в течение года не более 300 рад;
  • · на мирное время 10 рад в течение года.

Режим радиационной защиты населения включает три основных этапа:

  • 1. Укрытие населения в противорадиационном укрытии (ПРУ).
  • 2. Последующее укрытие населения в домах и ПРУ.
  • 3. Проживание населения в домах с ограниченным пребыванием на открытой местности в течение 1 - 2 часов в сутки. Этот же режим применителен и для больных больницы.

Режим радиационной защиты рабочих и служащих включает три основных этапа:

  • 1. Продолжительность прекращения работы объекта народного хозяйства (время непрерывного пребывания людей в ПРУ).
  • 2. Продолжительность работы объекта с использованием для отдыха защитных сооружений.
  • 3. Продолжительность работы объекта с ограничением пребывания рабочих и служащих на открытой местности.

Режимы радиационной защиты разработаны с учетом продолжительности работы каждой смены 1 - 12 часов.

Решение о защите населения от радиоактивного облучения принимается на основании следующих критериев:

  • · на ранней фазе развития аварии дозовые критерии (доза, прогнозируемая за первые 10 суток);
  • · на средней фазе развития аварии дозовые критерии (доза, прогнозируемая за первый год).

Режимы рабочих и служащих на объектах вводятся в действие решением НГО объектов. На территории населенного пункта или объекта народного хозяйства режим выбирается:

  • · по максимальному уровню радиации;
  • · по наименьшему значению коэффициента ослабления защитного сооружения.

Продолжительность соблюдения РРЗ и время прекращения его действия устанавливаются начальником ГО населенного пункта (объекта) с учетом конкретной радиационной обстановкой.

В зависимости от складывающейся радиационной обстановки проводятся следующие мероприятия по защите населения:

  • · ограничение пребывания населения на открытой местности путем временного укрытия в убежищах и домах с герметизацией жилых и служебных помещений на время рассеивания РВ в воздухе4
  • · предупреждение накопления радиоактивного йода в щитовидной железе -- йодная профилактика (прием внутрь препаратов стабильного йода: йодистый калий, 5%-ная йодная настойка);
  • · эвакуация населения при высоких мощностях доз излучения и невозможности выполнить соответствующий режим радиационной защиты;
  • · исключение или ограничение потребления пищевых продуктов;
  • · проведение санобработки с последующим дозиметрическим контролем;
  • · простейшая обработка поверхностно загрязненных продуктов питания (обмывание, удаление поверхностного слоя);
  • · защита органов дыхания подручными средствами (полотенца, носовые платки и т. п.), лучше увлажненными;
  • · перевод с/х животных на незараженные пастбища или фуражные корма -- дезактивация загрязненной местности;
  • · соблюдение населением правил личной гигиены:
  • § ограничить время пребывания на открытой местности;
  • § мыть обувь и вытряхивать одежду перед входом в помещение;
  • § не пить воду из открытых водоисточников и не купаться в них;
  • § не принимать пищу и не курить;
  • § не собирать фрукты, ягоды, грибы на загрязненной территории и др.

Своевременное проведение противорадиационных мероприятий может привести к минимуму количество облучаемых лиц. В тех случаях, когда защитные мероприятия выполняются не в полном объеме, потери населения будут определяться:

  • · величиной, продолжительностью и изотопным составом аварийного выброса ПЯД;
  • · метеоусловиями (скорость и направление ветра, осадки и др.) в момент аварии и в ходе формирования радиоактивного следа на местности, расстоянием от аварийного объекта до места проживания населения;
  • · плотностью населения в зонах радиоактивного загрязнения;
  • · защитными свойствами зданий, сооружений, жилых домов и иных мест укрытия людей и др.

Ранние эффекты облучения -- острая лучевая болезнь, местные лучевые поражения (лучевые ожоги кожи и слизистых) наиболее вероятны у людей, находящихся вблизи аварийного объекта. Не исключается возможность комбинированных поражений данной группы населения, вследствие сопутствующих аварии пожаров, взрывов.

Острые радиационные поражения среди населения возможны с внешней границы зоны опасного загрязнения (зона "Б").

Острое или хроническое облучение населения в малых дозах (менее 0,5 Зв.) может привести к отдаленным эффектам облучения. К ним относятся: катаракта, преждевременное старение, злокачественные опухоли, генетические дефекты. Вероятность возникновения онкологических и генетических последствий существует при сколь-угодно малых дозах облучения. Эти эффекты называются стохастическими (вероятные, случайные). Тяжесть стохастических эффектов не зависит от дозы, с ростом дозы увеличивается лишь вероятность их возникновения. Вредные эффекты, для которых существует пороговая доза и степень тяжести нарастает с ее увеличением, называются нестохастическими (лучевая катаракта, нарушение воспроизводительной функции и др.).

Особое положение занимают последствия облучения плода -- эмбриотоксические эффекты. Особо плод чувствителен к облучению на 4 - 12 неделях беременности.

Острая лучевая болезнь

Возможно развитие нескольких основных клинических вариантов острых лучевых поражений человека -- острой лучевой болезни (ОЛБ), местных радиационных поражений (МРП) и комбинированных радиационных поражений (КРП).

Зависимость тяжести лучевого поражения от дозы общего облучения обуславливает большое значение дозиметрической информации как диагностического показателя. Сведения о величине дозы излучения могут быть получены путем:

  • · измерения дозы на поверхности тела (индивидуальная дозиметрия);
  • · измерение дозы для группы людей, находившихся в сходных условиях (групповая дозиметрия);
  • · расчета по данным о длительности нахождения людей в зоне с определенными уровнями радиации (мощности дозы излучения), измеренными вначале облучения, периодически во время него и в конце периода радиационного воздействия, т. е. при выходе из загрязненной зоны.

Острая лучевая болезнь -- нозологическая форма, развивающаяся при внешнем гамма- и гамма-нейтронном облучении в дозе, превышающей 1 грэй (Гр) (1 Гр = 100 рад), полученной одномоментно или в течение короткого промежутка времени (от 3 до 10 суток), а также при поступлении внутрь радионуклидов, создающих адекватную поглощенную дозу.

ОЛБ от равномерного облучения -- типичный клинический вариант радиационного поражения при действии гамма-нейтронного излучения воздушного ядерного взрыва, а также гамма-облучения при нахождении на местности, загрязненной продуктами ядерного взрыва. Для облучения в очаге взрыва на открытой местности и относительном удалении от источника излучения и на территории следа радиоактивного облака характерно относительно равномерное воздействие ионизирующего излучения, перепад доз при котором для различных участков тела не превышает 2,5 - 3 раз.

Неравномерное облучение создается при увеличении доли нейтронов в общей дозе или при экранировании отдельных частей тела.

Клинические проявления ОЛБ являются завершающимся этапом в сложной цепи процессов, начинающихся со взаимодействия энергии ионизирующего излучения с клетками, тканями и жидкими средами организма.

Первичное действие радиации реализуется в физических, физико-химических и химических процессах с образованием химически активных свободных радикалов (Н+, ОН-, воды), обладающих высокими окислительными и восстановительными свойствами. В последующем образуются различные перекисные соединения (перекись водорода и др.). Окисляющие радикалы и перекиси угнетают активность одних ферментов и повышают других. В результате происходят вторичные радиобиологические эффекты на различных уровнях биологической интеграции.

Основное значение в развитии радиационных поражений имеют нарушения физиологической регенерации клеток и тканей, а также изменений функции регуляторных систем. Доказана большая чувствительность к действию ионизирующего излучения кроветворной ткани, эпителия кишечника и кожи, сперматогенного эпителия. Менее радиочувствительны мышечная и костная ткани. Высокая радиочувствительность в физиологическом, но сравнительно низкая радиопоражаемость в анатомическом плане характерны для нервной системы.

Несоответствие между количеством поглощенной дозы и величиной биологического эффекта может быть объяснено с учетом нарушений регуляторных функций центральной и вегетативной нервной системы, а не только прямым, непосредственным действием радиации на ткани и органы. Морфологические изменения в различных системах и органах, наиболее выраженные в период разгара заболевания, носят в основном дистрофический и деструктивный характер.

Для различных клинических форм ОЛБ характерны определенные ведущие патогенетические механизмы формирования патологического процесса и соответствующие им клинические синдромы.

В диапазоне доз от 1 до 10 Гр развивается костно-мозговая форма ОЛБ с преимущественным поражением кроветворения различной степени тяжести. При крайне тяжелом поражении (доза от 6 до 10 Гр) в клинической картине наряду с глубоким угнетением кроветворения возникают характерные поражения кишечника, в связи с чем некоторые исследователи обозначают эту патологию как переходную от костно-мозговой к кишечной форме.

Костномозговая форма

Костномозговой синдром при этой форме ОЛБ является ведущим, определяющим в значительной мере патогенез, клинику и исход заболевания.

Инфекционные осложнения и геморрагический синдром в основном представляют собой характерное следствие агранулоцитоза и тромбоцитопении.

Особая значимость в оценке первичной реакции принадлежит в первые 3 суток показателям крови: относительная и абсолютная лимфоцитопения является надежным количественным показателем для оценки тяжести лучевого поражения и прогнозирования течения заболевания в последующие сроки.

Клинические проявления периода первичной реакции являются не только следствием прямого повреждения радиочувствительных систем (лимфоцитопения, задержка клеточного деления, уменьшение числа или исчезновение молодых форм кроветворных клетов), но и свидетельствуют о ранних нарушениях нервно-регуляторных и гуморальных механизмов (диспесические, общеклинические, сосудистые расстройства).

Латентный период

После периода первичной реакции наступает относительное улучшение состояния. Прекращается рвота, тошнота, уменьшается гиперемия кожи и слизистых, нормализуется сон и аппетит, улучшается общее самочувствие. Объективные клинические симптомы выражены нерезко. Выявляются неустойчивость пульса и АД, лабильность вегетативной регуляции, умеренная общая астенизация, хотя изменения в кроветворении продолжают прогрессировать. Длительность латентного периода зависит от степени тяжести ОЛБ: 1 ст. -- до 3 суток, 2 ст. -- 15 - 28 суток, 3 ст. -- 8 - 15 суток, 4 ст. -- может и не быть или менее 6 - 8 суток.

Наибольшее внимание в латентный период должно быть уделено динамике гематологических показателей -- срокам и выраженности цитопении.

Цитопения обусловлена исчезновением циркулировавших в крови к моменту облучения клеток при нарастающем поражении ростковых элементов кроветворных органов и прекращении поступления созревающих клеток в периферическую кровь. Решающее прогностическое значение имеет уровень лимфоцитов на 3 - 6 сутки и гранулоцитов на 8 - 9 сутки. У больных крайне тяжелой степени абсолютное число лимфоцитов в первые 3 - 6 дней составляет 0,1 х 109/л, гранулоцитов -- менее 0,5 х 109/л на 8-й день после облучения, тромбоцитов -- менее 50 х 109/л.

На этот период приходится появление эпиляции. Пороговая поглощенная доза облучения, вызывающая эпиляцию, близка к 2,5 - 3 Гр. Наиболее радиочувствителен волосистый покров на голове, подбородке, в меньшей мере -- на груди, животе, лобке, конечностях. Эпиляция ресниц и бровей наблюдается при облучении дозой 6 Гр и более.

Период разгара заболевания

Прогрессирующее поражение костномозгового кроветворения достигает значительных и крайних степеней. Глубокая цитопения до выраженного агранулоцитоза (число гранулоцитов менее 1 х 109/л) составляет основу нарушений иммунитета с последующим снижением защитных свойств организма и формированием инфекционных осложнений экзогенной и эндогенной природы.

Нарушения трофики тканей и особенно кожи, слизистых оболочек кишечника и полости рта ведут к повышению проницаемости физиологических барьеров, поступлению в кровь токсических продуктов и микробов, развитию токсемии, бактериемии, сепсиса. Развивается анемия. Осложнения носят смешанный инфекционно-токсический характер. Тромбоцитопения и повышение проницаемости сосудов приводят к развитию геморрагического синдрома.

Сроки наступления периода разгара и его продолжительность зависят от степени тяжести ОЛБ:

  • · 1 ст. наступает на 30-е сутки, длится 10 суток;
  • · 2 ст. наступает на 20-е, длится 15 суток;
  • · 3 ст. наступает на 10-е, длится 30 суток;
  • · 4 ст. наступает на 4 - 8 сутки, на 3 - 6 недели наступает летальный исход.

Клинический переход от латентного к периоду разгара наступает резко (исключая легкую степень). Ухудшается самочувствие, снижается аппетит, нарастает слабость, повышается температура. Учащается пульс, который лабилен при перемене положения тела, небольших физических напряжениях. АД снижается. Формируется дистрофия миокарда (приглушение тонов сердца, расширение его размеров, изменения желудочкового комплекса на ЭКГ). Яркую клиническую картину приобретают инфекционно-токсические осложнения: при 2 ст. наблюдаются изменения полости носа, рта, глотки и гортани (стоматит, ларингит, фарингит, ангина). При 3 - 4 ст. возможны язвенно-некротические поражения слизистых пищеварительного тракта и верхних дыхательных путей, что позволяет выделить соответствующие синдромы: оральный, орофарингеальный, кишечный. При глубоком агранулоцитозе возможны тяжелые пневмонии, развитие сепсиса. Геморрагические осложнения проявляются кровоизлияниями, кровотечениями. Костный мозг при 4 ст. представляется полностью опустошенным.

Период восстановления

Различают фазу непосредственного (ближайшего) восстановления, заканчивающуюся в сроки от 2 до 4 месяцев от момента облучения соответственно при легкой, средней и тяжелой степени и фазу восстановления продолжительностью от нескольких месяцев до 1 - 3 лет. В эти сроки восстанавливаются основные функции, а более серьезные дефекты приобретают определенную стойкость; практически завершаются основные репаративные и реализуются возможные компенсаторные процессы.

Начало фазы непосредственного восстановления приходится на время выхода больного из агранулоцитоза.

Более тяжелые формы ОЛБ (кишечная, токсемическая, церебральная) у человека изучены недостаточно полно.

Кишечная форма

Первичная реакция развивается в первые минуты, длится 3 - 4 дня. Многократная рвота появляется в первые 15 - 30 минут. Характерны боли в животе, озноб, лихорадка, артериальная гипотензия. Часто в первые сутки отмечается жидкий стул, позднее возможны явления энтерита и динамической кишечной непроходимости. В первые 4 - 7 суток резко выражен орофарингеальный синдром в виде язвенного стоматита, некроза слизистой полости рта и зева. С 5 - 8 дня состояние резко ухудшается: высокая температура тела, тяжелый энтерит, обезвоживание, общая интоксикация, инфекционные осложнения, кровоточивость. Летальный исход на 8 - 16 сутки.

При гистологическом исследовании погибших на 10 - 16 день отмечается полная потеря кишечного эпителия, обусловленная прекращением физиологической регенерации клеток. Основная причина летальности обусловлена ранним радиационным поражением тонкого кишечника (кишечный синдром).

Токсемическая форма

Первичная реакция отмечается с первых минут, возможны кратковременная потеря сознания и нарушение двигательной активности. Развиваются тяжелые гемодинамические нарушения с резко выраженной артериальной гипотензией и коллаптоидным состоянием. Четко проявляется интоксикация вследствие глубоких нарушений обменных процессов и распада тканей кишечника, слизистых, кожи. Нарушается функция почек, что проявляется в олигоурии. Летальный исход наступает на 4 - 7 сутки.

Церебральная форма

По особенностям клинической картины обозначается как острейшая или молниеносная лучевая болезнь. Характерным для нее является поллапс с потерей сознания и резким падением АД. Клиническая картина может быть обозначена как шокоподобная реакция с выраженной гипотензией, признаками отека головного мозга, анурией. Рвота и понос носят изнуряющий характер. Выделяют следующие синдромы этой формы:

  • · судорожно-паралитический;
  • · аментивно-гипокинетический;
  • · дисциркуляторный с нарушением центральной регуляции ряда функций вследствие поражения нервных центров.

Летальный исход наступает в первые 3 суток, иногда -- в первые часы.

Лучевое воздействие в дозах, составляющих 250 - 300 Гр и более, вызывает гибель экспериментальных животных в момент облучения. Такую форму лучевого поражения обозначают как "смерть под лучом".

Местные лучевые поражения

Наряду с длительным внешним гамма-облучением людей, находящихся в зоне выпадения продуктов ядерного взрыва, возможно контактное бета-облучение преимущественно открытых участков тела в результате попадания радиоактивных продуктов взрыва на кожные покровы. Соотношение доз в результате внешнего облучения всего тела и местного (ограниченных участков) может быть таким, что делает реальным возникновение кожных поражений от бета-излучения (доза более 25 Гр) при отсутствии или слабой выраженности общеклинических проявлений лучевой болезни от внешнего гаммаоблучения (доза менее 0,5 Гр).

Развитие локальных поражений от воздействия гамма- и гамма-нейтронного излучения при ядерном взрыве возможно лишь в редких случаях. Существенная защита большой части тела обеспечивает выживание даже при переоблучении незащищенных участков. Локализация повреждений определяется геометрией облучения -- непосредственной близостью какой-либо части тела или конечности к источнику радиации.

Ожог глаз сопровождается полной, но обычно кратковременной слепотой. Реже развивается воспаление поверхностных сред глаз.

Объем медицинской помощи при радиационных поражениях

Первая медицинская помощь

Первая медицинская помощь (само и взаимопомощь) при радиационных поражениях предусматривает устранение или ослабление начальных признаков лучевой болезни. С этой целью личный состав Вооруженных Сил непосредственно после взрыва для профилактики первичной реакции принимает из аптечки индивидуальной противорвотное средство -- РСД или этаперазин (одну таблетку).

Население получает указание о профилактическом приеме противорвотного средства из штаба МСГО, отряда первой медицинской помощи.

При опасности дальнейшего облучения (в случае радиоактивного заражения местности) принимается радиозащитное средство -- цистамин -- 6 таблеток однократно.

После выхода из зоны радиоактивного заражения производится частичная санитарная обработка.

Доврачебная медицинская помощь

Доврачебная медицинская помощь имеет своей задачей устранение или ослабление начальных признаков лучевой болезни и принятие мер по устранению проявлений, угрожающих жизни пораженных.

Она предусматривает:

  • · при тошноте и рвоте: повторно 1 - 2 таблетки диметкарба или этаперазина;
  • · при сердечно-сосудистой недостаточности: 1 мл кордиамина подкожно, 1 мл 20 % кофеин-бензоата натрия п/к;
  • · при психомоторном возбуждении и реакции страха: 1 - 2 таблетки фенозепама, оксилидина или фенибута;
  • · при необходимости дальнейшего пребывания на местности с высоким уровнем радиации (в зоне заражения): повторно (через 4 - 6 часов после первого приема) 4 - 6 таблеток цистамина;
  • · при заражении открытых участков кожных покровов и обмундирования продуктами ядерного взрыва: частичная санитарная обработка после выхода из зоны радиоактивного заражения.

Первая врачебная помощь

Первая врачебная помощь направлена на устранение тяжелых проявлений лучевой болезни и подготовку пораженных к дальнейшей эвакуации.

Она предусматривает:

  • · при заражении кожных покровов и обмундирования продуктами ядерного взрыва (выше допустимого уровня): частичная санитарная обработка, при тошноте и рвоте:1 - 2 таблетки диметкарба или этаперазина; в случае упорной неукротимой рвоты 1 мл 0,1 % атропина сульфата п/к;
  • · при резком обезвоживании: в/в изотонический раствор натрия хлорида, обильное питье;
  • · при сердечно-сосудистой недостаточности: 1 мл кордиамина п/к, 1 мл 20 % кофеинбензоата натрия п/к или 1 мл 1 % мезатона в/м;
  • · при судорогах: 1 мл 3 % феназепама или 5 % барбамила в/м;
  • · при расстройстве стула, болях в животе: 2 таблетки сульфадиметоксина, 1 - 2 таблетки бесалола или фталазола (1 - 2 г);
  • · при выраженных проявлениях кровоточивости: внутрь 100 мл 5 % аминокапроновой кислоты, витамины С и Р, 1 - 2 таблетки димедрола.

Больных ОЛБ 1 степени после купирования первичной реакции возвращают в подразделения; при наличии проявлений разгара болезни их направляют в омедб (или омо) или профилированные больницы больничной базы МСГО.

Квалифицированная медицинская помощь

Квалифицированная медицинская помощь направлена на устранение тяжелых, угрожающих жизни проявлений лучевой болезни, борьбу с различными ее осложнениями и подготовку пораженных к дальнейшей эвакуации.

Она предусматривает:

  • · при заражении кожных покровов и обмундирования продуктами ядерного взрыва (сверх допустимого уровня): полную санитарную обработку;
  • · при упорной рвоте: 1 мл 2,5 % аминазина, разведенного в 5 мл 0,5 % новокаина, внутримышечно, или 1 мл 0,1 % атропина сульфата п/к; в случае резкого обезвоживания -- в/в капельно изотонический раствор натрия хлорида (до 3 л), гемодеза (300 - 500 мл), реополиглюкина (500 - 1000 мл);
  • · при острой сосудистой недостаточности: 1 мл 1 % мезатона в/м или норадреналина гидротартрата (в/в капельно, на глюкозе из расчета на 1 л 5 % глюкозы 2 - 4 мл 0,2 % норадреналина, 20 - 60 капель в минуту, под контролем АД);
  • · при сердечной недостаточности: 1 мл 0,06 % коргликона в 20 мл 20 % глюкозы в/в или 0,5 мл 0,05 % строфантин в 10 - 20 мл 20 % глюкозы в/в (вводить медленно);
  • · при возбуждении: феназепам по 0,5 - 1 мг 3 раза в день, оксилидин 0,02 3 - 4 раза в день или фенибут по 0,5 3 раза в день;
  • · при снижении числа лейкоцитов до 1 х 109/л: внутрь антибиотики (ампициллин или оксациллин по 0,25 - 0,5 каждые 4 - 6 часов, рифампицин по 0,3 2 раза в день или тетрациклин 0,2 3 - 5 раз в день) или сульфаниламидные препараты (сульфадиметоксин по 1 г 4 раза в день, сульфадимезин по 1 г 4 раза в день); по возможности проводят другие профилактические мероприятия (изоляция больных, уход за полостью рта, сокращение различных инфекций);
  • · при развитии инфекционных осложнений: антибиотики широкого спектра действия в больших дозах (ампициллин 6 г и более в сутки, рифампицин до 1,2 г в сутки, тетрациклин до 2 г в сутки); при отсутствии указанных препаратов используется пенициллин (5 - 10 млн. ед. в сутки) со стрептомицина сульфатом (1 г в сутки);
  • · при кровоточивости: 5 - 10 мл 1 % амбена в/в, до 100 мл 5 % аминокапроновой кислоты в/в, местно-гемостатическая губка, тромбин;
  • · при токсемии: 200 - 400 мл 5 % глюкозы в/в однократно, до 3 л изотонического раствора натрия хлорида в/в капельно, до 3 л раствора Рингера - Локка в/в капельно, 300 - 500 мл гемодеза или 500 - 1000 мл реополиглюкина в/в капельно;
  • · при угрозе и развитии отека головного мозга: в/в вливания 15 % маннита (из расчета 0,5 - 1,5 г сухого вещества на 1 кг массы тела), 10 % натрия хлорида (10 - 20 мл однократно) или 25 % магния сульфата (10 - 20 мл, медленно!).

Специализированная медицинская помощь

Задача специализированной медицинской помощи заключается в полном объеме по лечению пострадавших, окончательном устранении у них основных проявлений лучевой болезни и ее осложнений и создании условий для быстрейшего восстановления боеспособности и работоспособности.

Она предусматривает:

  • · при заражении кожных покровов и обмундирования продуктами ядерного взрыва выше допустимого уровня: полная санитарная обработка;
  • · при клинических проявлениях первичной реакции: противорвотные внутрь;
  • · при неукротимой рвоте: парентерально противорвотные, изотонический раствор натрия хлорида, гемодез, реополиглюкин, глюкоза;
  • · при острой сердечно-сосудистой недостаточности: мезатон, норадреналин, сердечные гликозиды;
  • · при обезвоживании: реополиглюкин, гемодез, глюкоза, изотонический раствор натрия хлорида (в случае необходимости в сочетании с диуретиками);
  • · при беспокойстве, страхе, болезненных явлениях: успокаивающие и обезболивающие;
  • · в скрытом периоде ОЛБ: поливитамины, антигистаминные, седативные;
  • · в предвидении агранулоцитоза и возможных инфекционных осложнений: сульфаниламиды и антибиотики, создание асептических условий содержания больных;
  • · при развитии инфекционных осложнений: антибиотики широкого спектра действия в максимальных терапевтических дозах;
  • · при явлениях цистита и пиелонефрита: нитрофурановые препараты;
  • · при снижении иммуно-биологической реактивности: введение лейковзвеси, свежезаготовленной крови, прямые переливания крови;
  • · при кровоточивости: ингибиторы фибринолизина, а также средства заместительной терапии;
  • · при выраженной анемии: переливание эритровзвеси, свежезаготовленной крови, прямые переливания;
  • · при токсемии: гемодез, реополиглюкин, изотонический раствор натрия хлорида, глюкоза;
  • · при угрозе и развитии отека мозга: осмодиуретики;
  • · при появлении желудочно-кишечных расстройств: сульфаниламиды, бесалол, электролиты, в тяжелых случаях -- парентеральное питание.

Для лечения начальной лучевой эритемы местно применяют примочки или влажновысыхающие повязки с противовоспалительными средствами, кортикостероидные мази, новокаиновые блокады.

В тяжелых случаях возможна трансплантация костного мозга.

Населению следует помнить по радиационной защите следующее: радиационный фон обусловлен занесенными радиоактивными веществами, которые могут распространяться главным образом с пылью, поэтому следует выполнять следующие рекомендации:

  • · При работе вне помещений быть в верхней одежде и головном уборе, при сильном пылеобразующем ветре использовать ватно-марлевую повязку.
  • · Купание в открытых водоемах, пребывание на пляжах на некоторое время исключается.
  • · Нежелательно находиться под дождем и снегом без зонта, укрываться от дождя под деревом, лежать на траве.
  • · Колодцы следует оборудовать навесами и отмосткой, плотно закрыть крышками, чтобы в них не попадала пыль.
  • · Не следует собирать цветы, ягоды, грибы и др.
  • · При входе в помещения тщательно вытирать обувь об обильно смоченный коврик, верхнюю одежду тщательно вычистить с помощью пылесоса, обувь и верхнюю одежду оставлять в передней, в домашней обуви не ходить на улице.
  • · Во всех помещениях необходима ежедневная влажная уборка с использованием моющих средств.
  • · Проветривание помещений лучше осуществлять перед сном, в безветренную погоду, после дождя или с последующей влажной уборкой помещения.
  • · Перед приемом пищи и воды необходимо хорошо прополоскать рот водой, забрать воду через нос и несколько раз отсморкаться, тщательно вымыть руки.
  • · Питание должно быть полноценным.
  • · Приготовление пищи: вымочить мясо в мелких кусочках 1 - 2,5 часа, затем кипятить в воде без соли до полуготовности, воду слить и далее варить до готовности. Желательно исключить салат, щавель и шпинат. Овощи и фрукты тщательно промыть проточной водой. Продовольствие приобретать там, где ведется дозиметрическая проверка.
  • · Выводить на прогулку домашних животных только на поводках, а по возвращении с прогулок тщательно обтирать влажной тканью, обмывать лапы.

Инструкция по применению стабилизированных таблеток калий-йодида

Таблетки калий-йодида являются эффективным средством, снижающим накопление радиоактивного йода в щитовидной железе человека. При употреблении молока от коров и коз, выпасаемых на загрязненных радиоактивными продуктами пастбищах, прием таблеток калий-йодида снижает в 50 - 60 раз дозу облучения щитовидной железы. Защитная эффективность однократного приема калий-йодида сохраняется одни сутки. При систематическом потреблении в пищу продуктов, загрязненных радиоактивным йодом, таблетки калий-йода применяются ежедневно.

Способ применения и дозы

Начиная с момента выпадения радиоактивных продуктов деления, ежедневно принимаются внутрь таблетки калия-йодида 1 раз в день натощак в течении 10 суток в дозах:

  • · взрослым и детям старше 5 лет -- 0,25 гр.;
  • · детям от 2 до 5 лет -- 0,125 гр.;
  • · детям от 3 месяцев до 2 лет -- 0,040 гр.;
  • · детям, находящимся на грудном вскармливании, достаточно того количества йода, которое будет поступать с молоком матери, принявшей 0,25 гр. калий-йодида.

Однако перед первым кормлением грудного ребенка любого возраста ему необходимо дать 0,02 гр. калий-йодида в виде раствора (сладкой кипяченой водой).

Во избежание раздражения желудочно-кишечного тракта таблетку необходимо запивать киселем, сладким чаем и т. п. Для детей таблетку истолочь, растворить в небольшом объеме киселя, чая. После приема обязательно дать запить киселем или сладким чаем.

Предлагается вариант выводов и предложений из оценки обстановки в случае радиоактивного заражения.

Вариант выводов и предложений из оценки обстановки в случае радиоактивного заражения

Вследствие аварии на____________________ АЭС по состоянию на ____час "___"__________199__г.

Наиболее сложная радиоактивная обстановка сложилась в

___________________________________ ________________________,

где доза внутреннего облучения детей превышает _____бэр,

взрослого населения________бэр.

Уровни радиации на_______час. после выпадения РВ составляют:

  • - в_____________________________________________________мр/ч
  • - в_____________________________________________________мр/ч

Численность населения в этих______________________________________________________________

составляет__________тыс. чел., в том числе детей___________тыс. чел.

В этой обстановке предлагаю:

1. Немедленно провести оповещение населения, попадающего в зоны заражения и довести рекомендации по его защите.

К_____час. "___"____________199__г. эвакуировать людей,

попавших в зону______________________________

из___________________________________________________________

в районы_____________________________________________________

Жителей населенных пунктов____________________________________

_____________________________________________________________

укрыть в_____________________________________________________

с Косл. =_______________,

население_____________________________________________________

в домах с Косл. ______________.

2. С______час. "____"_____________199__г. приступить к ведению радиационной разведки силами______________________________________

Для выявления радиационной обстановки

в________________________________________________________________привлечь____________________________________________________

  • 3. Режимы радиационной защиты населения установить: в__________________________________________________________N______ в__________________________________________________________N______
  • 4. С______час. "____"____________199__г. силами____________________________________ _________________ осуществлять контроль РЗ продовольствия, молока, воды, растений, оружия.
  • 5. К______час. "____"____________199__г. провести дозиметрический контроль людей, с/х животных, техники, попавших в зоны заражения для определения объемов работ по специальной обработке.
  • 6. Санитарную обработку ______тыс. чел. провести до _____час. "___"___________199__г., для чего использовать СОПы_____________________________________________.

Для дезактивации одежды использовать СОО_____________________________________________, а техники СОТы_____________________________________________________________

7. С целью уменьшения потерь среди населения необходимо до _____час "___"____________199__г. провести срочную йодную профилактику, в первую очередь____________________________________________________

Детей населенных пунктов________________________________________________________________________________________ получивших дозы внутреннего облучения более____________бэр на щитовидную железу, необходимо направить на стационарное обследование в специализированные лечебные учреждения

7а. Для проведения йодной профилактики использовать запасы стабильного йода, имеющиеся в аптеках_____________________, на центральном аптечном складе, а также_______________________________

Запасы стабильного йода распределить_______________________________________________________

7б. Главным врачам____________________________________________________________взять под строгий контроль расфасовку и распределение препаратов стабильного йода.

Расфасовку осуществлять силами служащих аптечных учреждений, а также санитарных дружин

  • 8. Силами службы ООП к______час. "____"______________199__г. перекрыть дороги и ограничить доступ в зоны заражения_________________________________________________________
  • 9. Для дезактивации улиц и дорог__________________________________________________________________________________________использовать__________________________

Работы проводить посменно, при том_______________________________________________________________

На АЭС "Фламанвиль" во Франции произошел взрыв. Как сообщили французские власти, угрозы ядерного заражения местности нет. Местные власти заявили, что инцидент не будет иметь опасных последствий.

Причиной взрыва, согласно последним данным, стала техническая неисправность. Руководство АЭС - компания EDF Energy - распорядилось остановить работу одного реактора.

Атомная электростанция "Фламанвиль" расположена на полуострове Котантен в Ла-Манше на северо-западе Франции. На АЭС расположены два водо-водяных энергетических реактора, которые были построены в 1980-х гг., третий реактор находится в стадии строительства.

Реактор должен был быть введен в строй в 2018 г., однако сотни людей вышли на протестные мероприятия в связи планами по вводу нового реактора. Стоимость его строительства оценивается в 10,5 млрд евро (9 млрд фунтов стерлингов).

Подобная катастрофа не первая в истории атомной энергетики, которую после 2011 г., когда произошел взрыв на АЭС "Фукусима" в Японии, считают одной из самых опасных видов энергетики.

Представляем топ-10 самых опасных аварий на АЭС в истории.

1. АЭС "Раджастан", Индия

АЭС "Раджастан" - атомная электростанция в 65 км от города Кота штата Раджастхан в Индии. Первая индийская АЭС с тяжеловодными ядерными реакторами.

В ноябре 2002 г. МАГАТЭ проводило проверку реакторов АЭС "Раджастан" и пришло к выводу, что АЭС выдержит ситуацию, аналогичную приведшей к аварии на АЭС "Фукусима-1".

Однако аварий на электростанции все же произошло немало.

Так, в 2012 г. облучению тритием подверглись 38 рабочих, проводивших сварочные работы на реакторе.

2. АЭС NRX, Канада

Первая в мире серьёзная авария произошла 12 декабря 1952 г. в Канаде, штат Онтарио, Чолк-Ривер на атомной электростанции NRX.

Техническая ошибка персонала привела к перегреву и частичному расплавлению активной зоны.

Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 куб. м радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалеку от реки Оттавы.

3. АЭС "Касивазаки-Карива", Япония

АЭС "Касивазаки-Карива" находится в японском городе Касивадзаки префектуры Ниигата. В эксплуатации находятся пять кипящих ядерных реакторов (BWR) и два улучшенных кипящих ядерных реакторов (ABWR), суммарная мощность которых составляет 8 212 мегаватт (МВт).

Первый энергоблок введен в строй в 1985 г.

В результате землетрясения 16 июля 2007 г. магнитудой 6,8 по шкале Рихтера и эпицентром в 19 км от Касивадзаки-Карива на станции возникли нештатные ситуации.

На момент землетрясения работали 4 энергоблока, 3 находились на плановом осмотре. После землетрясения работавшие реакторы были остановлены.

В результате подземных толчков произошли подвижки почвы под реакторами АЭС, станция получила более 50 различных повреждений, но самым тяжелым последствием оказалась утечка радиоактивной воды из резервуара хранения отработанного топлива в зону общего доступа под шестым реактором.

При этом неизвестно, сколько воды вытекло из АЭС в море. Помимо этого опрокинулись 438 емкостей с отходами низкой радиоактивности, у некоторых из них сорвало крышки. Также возник пожар на трансформаторе 3-го блока.

Оказались повреждены фильтры, что привело к выходу радиоактивной пыли за пределы АЭС. В итоге работа АЭС была остановлена для ревизии, ремонта и дополнительных антисейсмических мероприятий.

Общий ущерб от землетрясения оценивался в $12,5 млрд, из них $5,8 млрд составляют убытки от ремонта и простоя АЭС.

4. АЭС SL-1, США

Авария на SL-1, опытной АЭС в Айдахо, США, случилась 3 января 1961 г.

Три работника станции занимались присоединением стержней регулирования к механизму привода, когда произошел взрыв.

Двое операторов погибли на месте, третий скончался немногим позже. Тела пришлось хоронить в свинцовых гробах, столь высок был уровень их радиации.

Исследование после аварии показало, что температура топлива была выше 2 тыс. К, имело место расплавление - 20% топлива и частичное испарение материалов в центральной части активной зоны.

При этом около 2 кг урана было вынесено из активной зоны.

5. АЭС Lucens, Швейцария

21 января 1969 г. на реакторе произошла авария, приведшая к разрушению одной из топливных сборок и повреждению соответствующей трубки высокого давления.

Диоксид углерода устремился в резервуар с замедлителем и, после разрушения его предохранительного диска, под защитную оболочку реактора (которая в данном случае представляла собой подземную полость), вынося с собой продукты деления и большую часть тяжеловодного замедлителя.

Впоследствии реактор был демонтирован. Исследование причин аварии оказалось делом очень сложным и продолжалось почти 10 лет.

Как было установлено, к аварии привело проникновение воды в один из топливных каналов, расположенных на периферии активной зоны, что произошло вследствие течи через уплотнительные кольца вала газодувки, прокачивающей диоксид углерода.

Поскольку нижний конец трубки высокого давления был закрыт, то после остановки реактора в этих периферийных каналах на дне осталось некоторое количество воды.

6. АЭС Three Mile Island, США

АЭС Three Mile Island - атомная электростанция, расположенная на острове на реке Саскуэханна в 16 км к югу от Гаррисберга, столицы штата Пенсильвания, США.

Станция состоит из двух энергоблоков мощностью 802 (в настоящее время увеличена до 852) и 906 МВт (в настоящее время не работает). Строительство началось в 1968 г., первый энергоблок был введен в работу в 1974 г., второй - в 1978 г.

28 марта 1979 г. на АЭС произошла одна из крупнейших аварий в истории ядерной энергетики США.

В результате сочетания технических неисправностей, нарушений ремонтных и эксплуатационных процедур и неправильных действий персонала аварийная ситуация развилась в очень тяжелую, в итоге была серьезно повреждена активная зона реактора, включая часть топливных урановых стержней.

Впоследствии выяснилось, что около 45% компонентов активной зоны (62 тонны) расплавилось.

Согласно официальным данным в результате аварии никто не погиб и не получил серьезного ущерба для здоровья.

Попавшее в окружающую среду количество радиоактивных частиц было оценено как незначительное.

Однако событие вызвало чрезвычайно широкий резонанс в обществе, в США началась широкомасштабная и сверхэмоциональная антиядерная кампания, результатом которой явился постепенный отказ от строительства новых энергоблоков.

Из 125 строившихся в США на время аварии объектов атомной энергетики 50 были законсервированы, несмотря на высокую степень готовности некоторых из них.

7. Пожар в Уиндскейле, Великобритания

Авария в Уиндскейле - крупная радиационная авария, произошедшая 10 октября 1957 г. на одном из двух реакторов атомного комплекса "Селлафилд", в графстве Камбрия на северо-западе Англии.

В результате пожара в графитовом реакторе с воздушным охлаждением для производства оружейного плутония произошел крупный (550-750 TБк) выброс радиоактивных веществ.

Авария соответствует 5-му уровню по международной шкале ядерных событий (INES) и является крупнейшей в истории ядерной индустрии Великобритании.

Детерминированные эффекты у персонала отсутствовали, никто не получил дозу, близкую к уровню, превышающему в десять раз установленный предел годовой дозы облучения всего тела для работников.

После аварии производился контроль поступающего в продажу молока, из находящихся поблизости ферм его продажа была запрещена в течение 6 недель.

8. Кыштымская авария, Россия

"Кыштымская авария" - первая в СССР радиационная чрезвычайная ситуация техногенного характера, возникшая 29 сентября 1957 г. на химкомбинате "Маяк", расположенном в закрытом городе Челябинск-40 (ныне Озёрск).

В ходе ликвидации последствий аварии 23 деревни из наиболее загрязненных районов с населением от 10 тыс. до 12 тыс. человек были отселены, а строения, имущество и скот уничтожены.

Для предотвращения разноса радиации в 1959 г. решением правительства была образована санитарно-защитная зона на наиболее загрязненной части радиоактивного следа, где всякая хозяйственная деятельность была запрещена, а с 1968 г. на этой территории образован Восточно-Уральский государственный заповедник.

В настоящий момент зона заражения именуется Восточно-Уральским радиоактивным следом.

Для ликвидации последствий аварии привлекались сотни тысяч военнослужащих и гражданских лиц, получивших значительные дозы облучения.

9. АЭС "Фукусима-1", Япония

Авария на АЭС "Фукусима-1" - крупная радиационная авария максимального 7-го уровня по Международной шкале ядерных событий, произошедшая 11 марта 2011 г. в результате сильнейшего в истории Японии землетрясения и последовавшего за ним цунами.

Землетрясение и удар цунами вывели из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии.

За месяц до аварии японское ведомство одобрило эксплуатацию энергоблока № 1 в течение последующих 10 лет.

В декабре 2013 г. АЭС была официально закрыта. На территории станции продолжаются работы по ликвидации последствий аварии.

Японские инженеры-ядерщики оценивают, что приведение объекта в стабильное, безопасное состояние может потребовать до 40 лет.

Финансовый ущерб, включая затраты на ликвидацию последствий, затраты на дезактивацию и компенсации, оценивается в $100 млрд.

Поскольку работы по устранению последствий займут годы, сумма увеличится.

10. Чернобыльская АЭС, СССР

Авария на Чернобыльской АЭС - разрушение 26 апреля 1986 г. четвертого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украинской ССР.

Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ.

Авария расценивается как крупнейшая в своем роде за всю историю атомной энергетики как по предполагаемому количеству погибших и пострадавших от ее последствий людей, так и по экономическому ущербу.

В течение первых трех месяцев после аварии погиб 31 человек; отдаленные последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек.

134 человека перенесли лучевую болезнь той или иной степени тяжести. Более 115 тыс. человек из 30-километровой зоны были эвакуированы.

Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.